#include "aes_core.h" #include #include #include #include #ifndef uint32_t #define uint32_t unsigned int #endif /** * \brief SHA-256 context structure */ typedef struct { uint32_t total[2]; /*!< number of bytes processed */ uint32_t state[8]; /*!< intermediate digest state */ unsigned char buffer[64]; /*!< data block being processed */ int is224; /*!< 0 => SHA-256, else SHA-224 */ } RK_SHA256_CTX; /* Implementation that should never be optimized out by the compiler */ static void mbedtls_zeroize(void *v, size_t n) { volatile unsigned char *p = v; while (n--) *p++ = 0; } /* * 32-bit integer manipulation macros (big endian) */ #ifndef GET_UINT32_BE #define GET_UINT32_BE(n, b, i) \ do { \ (n) = ((uint32_t)(b)[(i)] << 24) | ((uint32_t)(b)[(i) + 1] << 16) | \ ((uint32_t)(b)[(i) + 2] << 8) | ((uint32_t)(b)[(i) + 3]); \ } while (0) #endif #ifndef PUT_UINT32_BE #define PUT_UINT32_BE(n, b, i) \ do { \ (b)[(i)] = (unsigned char)((n) >> 24); \ (b)[(i) + 1] = (unsigned char)((n) >> 16); \ (b)[(i) + 2] = (unsigned char)((n) >> 8); \ (b)[(i) + 3] = (unsigned char)((n)); \ } while (0) #endif void mbedtls_sha256_init(RK_SHA256_CTX *ctx) { memset(ctx, 0, sizeof(RK_SHA256_CTX)); } void mbedtls_sha256_free(RK_SHA256_CTX *ctx) { if (ctx == NULL) return; mbedtls_zeroize(ctx, sizeof(RK_SHA256_CTX)); } void mbedtls_sha256_clone(RK_SHA256_CTX *dst, const RK_SHA256_CTX *src) { *dst = *src; } /* * SHA-256 context setup */ void mbedtls_sha256_starts(RK_SHA256_CTX *ctx, int is224) { ctx->total[0] = 0; ctx->total[1] = 0; if (is224 == 0) { /* SHA-256 */ ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; } else { /* SHA-224 */ ctx->state[0] = 0xC1059ED8; ctx->state[1] = 0x367CD507; ctx->state[2] = 0x3070DD17; ctx->state[3] = 0xF70E5939; ctx->state[4] = 0xFFC00B31; ctx->state[5] = 0x68581511; ctx->state[6] = 0x64F98FA7; ctx->state[7] = 0xBEFA4FA4; } ctx->is224 = is224; } static const uint32_t K[] = { 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, }; #define SHR(x, n) ((x & 0xFFFFFFFF) >> n) #define ROTR(x, n) (SHR(x, n) | (x << (32 - n))) #define S0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) #define S1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) #define S2(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define S3(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define F0(x, y, z) ((x & y) | (z & (x | y))) #define F1(x, y, z) (z ^ (x & (y ^ z))) #define R(t) (W[t] = S1(W[t - 2]) + W[t - 7] + S0(W[t - 15]) + W[t - 16]) #define P(a, b, c, d, e, f, g, h, x, K) \ { \ temp1 = h + S3(e) + F1(e, f, g) + K + x; \ temp2 = S2(a) + F0(a, b, c); \ d += temp1; \ h = temp1 + temp2; \ } void mbedtls_sha256_process(RK_SHA256_CTX *ctx, const unsigned char data[64]) { uint32_t temp1, temp2, W[64]; uint32_t A[8]; unsigned int i; for (i = 0; i < 8; i++) A[i] = ctx->state[i]; #if defined(MBEDTLS_SHA256_SMALLER) for (i = 0; i < 64; i++) { if (i < 16) GET_UINT32_BE(W[i], data, 4 * i); else R(i); P(A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], W[i], K[i]); temp1 = A[7]; A[7] = A[6]; A[6] = A[5]; A[5] = A[4]; A[4] = A[3]; A[3] = A[2]; A[2] = A[1]; A[1] = A[0]; A[0] = temp1; } #else /* MBEDTLS_SHA256_SMALLER */ for (i = 0; i < 16; i++) GET_UINT32_BE(W[i], data, 4 * i); for (i = 0; i < 16; i += 8) { P(A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], W[i + 0], K[i + 0]); P(A[7], A[0], A[1], A[2], A[3], A[4], A[5], A[6], W[i + 1], K[i + 1]); P(A[6], A[7], A[0], A[1], A[2], A[3], A[4], A[5], W[i + 2], K[i + 2]); P(A[5], A[6], A[7], A[0], A[1], A[2], A[3], A[4], W[i + 3], K[i + 3]); P(A[4], A[5], A[6], A[7], A[0], A[1], A[2], A[3], W[i + 4], K[i + 4]); P(A[3], A[4], A[5], A[6], A[7], A[0], A[1], A[2], W[i + 5], K[i + 5]); P(A[2], A[3], A[4], A[5], A[6], A[7], A[0], A[1], W[i + 6], K[i + 6]); P(A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[0], W[i + 7], K[i + 7]); } for (i = 16; i < 64; i += 8) { P(A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], R(i + 0), K[i + 0]); P(A[7], A[0], A[1], A[2], A[3], A[4], A[5], A[6], R(i + 1), K[i + 1]); P(A[6], A[7], A[0], A[1], A[2], A[3], A[4], A[5], R(i + 2), K[i + 2]); P(A[5], A[6], A[7], A[0], A[1], A[2], A[3], A[4], R(i + 3), K[i + 3]); P(A[4], A[5], A[6], A[7], A[0], A[1], A[2], A[3], R(i + 4), K[i + 4]); P(A[3], A[4], A[5], A[6], A[7], A[0], A[1], A[2], R(i + 5), K[i + 5]); P(A[2], A[3], A[4], A[5], A[6], A[7], A[0], A[1], R(i + 6), K[i + 6]); P(A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[0], R(i + 7), K[i + 7]); } #endif /* MBEDTLS_SHA256_SMALLER */ for (i = 0; i < 8; i++) ctx->state[i] += A[i]; } /* * SHA-256 process buffer */ void mbedtls_sha256_update(RK_SHA256_CTX *ctx, const unsigned char *input, size_t ilen) { size_t fill; uint32_t left; if (ilen == 0) return; left = ctx->total[0] & 0x3F; fill = 64 - left; ctx->total[0] += (uint32_t)ilen; ctx->total[0] &= 0xFFFFFFFF; if (ctx->total[0] < (uint32_t)ilen) ctx->total[1]++; if (left && ilen >= fill) { memcpy((void *)(ctx->buffer + left), input, fill); mbedtls_sha256_process(ctx, ctx->buffer); input += fill; ilen -= fill; left = 0; } while (ilen >= 64) { mbedtls_sha256_process(ctx, input); input += 64; ilen -= 64; } if (ilen > 0) memcpy((void *)(ctx->buffer + left), input, ilen); } static const unsigned char sha256_padding[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; /* * SHA-256 final digest */ void mbedtls_sha256_finish(RK_SHA256_CTX *ctx, unsigned char output[32]) { uint32_t last, padn; uint32_t high, low; unsigned char msglen[8]; high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); low = (ctx->total[0] << 3); PUT_UINT32_BE(high, msglen, 0); PUT_UINT32_BE(low, msglen, 4); last = ctx->total[0] & 0x3F; padn = (last < 56) ? (56 - last) : (120 - last); mbedtls_sha256_update(ctx, sha256_padding, padn); mbedtls_sha256_update(ctx, msglen, 8); PUT_UINT32_BE(ctx->state[0], output, 0); PUT_UINT32_BE(ctx->state[1], output, 4); PUT_UINT32_BE(ctx->state[2], output, 8); PUT_UINT32_BE(ctx->state[3], output, 12); PUT_UINT32_BE(ctx->state[4], output, 16); PUT_UINT32_BE(ctx->state[5], output, 20); PUT_UINT32_BE(ctx->state[6], output, 24); if (ctx->is224 == 0) PUT_UINT32_BE(ctx->state[7], output, 28); } /* * output = SHA-256( input buffer ) */ int rk_hash_sha256(const unsigned char *in, unsigned int in_len, unsigned char *out, unsigned int *out_len) { RK_SHA256_CTX ctx; if (in == NULL && in_len != 0) return -1; if (out == NULL || out_len == NULL) return -1; mbedtls_sha256_init(&ctx); mbedtls_sha256_starts(&ctx, 0); mbedtls_sha256_update(&ctx, in, in_len); mbedtls_sha256_finish(&ctx, out); mbedtls_sha256_free(&ctx); *out_len = 32; return 0; } int rk_hash_sha224(const unsigned char *in, unsigned int in_len, unsigned char *out, unsigned int *out_len) { RK_SHA256_CTX ctx; if (in == NULL && in_len != 0) return -1; if (out == NULL || out_len == NULL) return -1; mbedtls_sha256_init(&ctx); mbedtls_sha256_starts(&ctx, 1); mbedtls_sha256_update(&ctx, in, in_len); mbedtls_sha256_finish(&ctx, out); mbedtls_sha256_free(&ctx); *out_len = 28; return 0; }