1491 lines
41 KiB
C
1491 lines
41 KiB
C
#include "sm4_core.h"
|
|
#include "sm4_locl.h"
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#define OPENSSL_FIPSAPI
|
|
#define TABLE_BITS 1
|
|
#include <string.h>
|
|
#define DEBUG(format, ...) \
|
|
printf("[%s]:%d: " format "\n", __func__, __LINE__, ##__VA_ARGS__)
|
|
|
|
#ifndef MODES_DEBUG
|
|
#ifndef NDEBUG
|
|
#define NDEBUG
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(BSWAP4)
|
|
/* redefine, because alignment is ensured */
|
|
#undef GETU32
|
|
#define GETU32(p) BSWAP4(*(const u32 *)(p))
|
|
#undef PUTU32
|
|
#define PUTU32(p, v) *(u32 *)(p) = BSWAP4(v)
|
|
#endif
|
|
|
|
#define PACK(s) ((size_t)(s) << (sizeof(size_t) * 8 - 16))
|
|
#define REDUCE1BIT(V) \
|
|
do { \
|
|
if (sizeof(size_t) == 8) { \
|
|
u64 T = U64(0xe100000000000000) & (0 - (V.lo & 1)); \
|
|
V.lo = (V.hi << 63) | (V.lo >> 1); \
|
|
V.hi = (V.hi >> 1) ^ T; \
|
|
} else { \
|
|
u32 T = 0xe1000000U & (0 - (u32)(V.lo & 1)); \
|
|
V.lo = (V.hi << 63) | (V.lo >> 1); \
|
|
V.hi = (V.hi >> 1) ^ ((u64)T << 32); \
|
|
} \
|
|
} while (0)
|
|
|
|
typedef struct {
|
|
u64 hi, lo;
|
|
} u128;
|
|
|
|
typedef void (*ctr128_f)(const unsigned char *in, unsigned char *out,
|
|
unsigned int blocks, const void *key,
|
|
const unsigned char ivec[16]);
|
|
|
|
struct gcm128_context {
|
|
/* Following 6 names follow names in GCM specification */
|
|
union {
|
|
u64 u[2];
|
|
u32 d[4];
|
|
u8 c[16];
|
|
} Yi, EKi, EK0, len, Xi, H;
|
|
/* Relative position of Xi, H and pre-computed Htable is used
|
|
* in some assembler modules, i.e. don't change the order! */
|
|
#if TABLE_BITS == 8
|
|
u128 Htable[256];
|
|
#else
|
|
u128 Htable[16];
|
|
void (*gmult)(u64 Xi[2], const u128 Htable[16]);
|
|
void (*ghash)(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len);
|
|
#endif
|
|
unsigned int mres, ares;
|
|
block128_f block;
|
|
void *key;
|
|
};
|
|
|
|
typedef struct gcm128_context GCM128_CONTEXT;
|
|
|
|
/*
|
|
* Even though permitted values for TABLE_BITS are 8, 4 and 1, it should
|
|
* never be set to 8. 8 is effectively reserved for testing purposes.
|
|
* TABLE_BITS>1 are lookup-table-driven implementations referred to as
|
|
* "Shoup's" in GCM specification. In other words OpenSSL does not cover
|
|
* whole spectrum of possible table driven implementations. Why? In
|
|
* non-"Shoup's" case memory access pattern is segmented in such manner,
|
|
* that it's trivial to see that cache timing information can reveal
|
|
* fair portion of intermediate hash value. Given that ciphertext is
|
|
* always available to attacker, it's possible for him to attempt to
|
|
* deduce secret parameter H and if successful, tamper with messages
|
|
* [which is nothing but trivial in CTR mode]. In "Shoup's" case it's
|
|
* not as trivial, but there is no reason to believe that it's resistant
|
|
* to cache-timing attack. And the thing about "8-bit" implementation is
|
|
* that it consumes 16 (sixteen) times more memory, 4KB per individual
|
|
* key + 1KB shared. Well, on pros side it should be twice as fast as
|
|
* "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version
|
|
* was observed to run ~75% faster, closer to 100% for commercial
|
|
* compilers... Yet "4-bit" procedure is preferred, because it's
|
|
* believed to provide better security-performance balance and adequate
|
|
* all-round performance. "All-round" refers to things like:
|
|
*
|
|
* - shorter setup time effectively improves overall timing for
|
|
* handling short messages;
|
|
* - larger table allocation can become unbearable because of VM
|
|
* subsystem penalties (for example on Windows large enough free
|
|
* results in VM working set trimming, meaning that consequent
|
|
* malloc would immediately incur working set expansion);
|
|
* - larger table has larger cache footprint, which can affect
|
|
* performance of other code paths (not necessarily even from same
|
|
* thread in Hyper-Threading world);
|
|
*
|
|
* Value of 1 is not appropriate for performance reasons.
|
|
*/
|
|
#if TABLE_BITS == 8
|
|
|
|
static void gcm_init_8bit(u128 Htable[256], u64 H[2]) {
|
|
int i, j;
|
|
u128 V;
|
|
|
|
Htable[0].hi = 0;
|
|
Htable[0].lo = 0;
|
|
V.hi = H[0];
|
|
V.lo = H[1];
|
|
|
|
for (Htable[128] = V, i = 64; i > 0; i >>= 1) {
|
|
REDUCE1BIT(V);
|
|
Htable[i] = V;
|
|
}
|
|
|
|
for (i = 2; i < 256; i <<= 1) {
|
|
u128 *Hi = Htable + i, H0 = *Hi;
|
|
for (j = 1; j < i; ++j) {
|
|
Hi[j].hi = H0.hi ^ Htable[j].hi;
|
|
Hi[j].lo = H0.lo ^ Htable[j].lo;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256]) {
|
|
u128 Z = {0, 0};
|
|
const u8 *xi = (const u8 *)Xi + 15;
|
|
size_t rem, n = *xi;
|
|
const union {
|
|
long one;
|
|
char little;
|
|
} is_endian = {1};
|
|
static const size_t rem_8bit[256] = {
|
|
PACK(0x0000), PACK(0x01C2), PACK(0x0384), PACK(0x0246), PACK(0x0708),
|
|
PACK(0x06CA), PACK(0x048C), PACK(0x054E), PACK(0x0E10), PACK(0x0FD2),
|
|
PACK(0x0D94), PACK(0x0C56), PACK(0x0918), PACK(0x08DA), PACK(0x0A9C),
|
|
PACK(0x0B5E), PACK(0x1C20), PACK(0x1DE2), PACK(0x1FA4), PACK(0x1E66),
|
|
PACK(0x1B28), PACK(0x1AEA), PACK(0x18AC), PACK(0x196E), PACK(0x1230),
|
|
PACK(0x13F2), PACK(0x11B4), PACK(0x1076), PACK(0x1538), PACK(0x14FA),
|
|
PACK(0x16BC), PACK(0x177E), PACK(0x3840), PACK(0x3982), PACK(0x3BC4),
|
|
PACK(0x3A06), PACK(0x3F48), PACK(0x3E8A), PACK(0x3CCC), PACK(0x3D0E),
|
|
PACK(0x3650), PACK(0x3792), PACK(0x35D4), PACK(0x3416), PACK(0x3158),
|
|
PACK(0x309A), PACK(0x32DC), PACK(0x331E), PACK(0x2460), PACK(0x25A2),
|
|
PACK(0x27E4), PACK(0x2626), PACK(0x2368), PACK(0x22AA), PACK(0x20EC),
|
|
PACK(0x212E), PACK(0x2A70), PACK(0x2BB2), PACK(0x29F4), PACK(0x2836),
|
|
PACK(0x2D78), PACK(0x2CBA), PACK(0x2EFC), PACK(0x2F3E), PACK(0x7080),
|
|
PACK(0x7142), PACK(0x7304), PACK(0x72C6), PACK(0x7788), PACK(0x764A),
|
|
PACK(0x740C), PACK(0x75CE), PACK(0x7E90), PACK(0x7F52), PACK(0x7D14),
|
|
PACK(0x7CD6), PACK(0x7998), PACK(0x785A), PACK(0x7A1C), PACK(0x7BDE),
|
|
PACK(0x6CA0), PACK(0x6D62), PACK(0x6F24), PACK(0x6EE6), PACK(0x6BA8),
|
|
PACK(0x6A6A), PACK(0x682C), PACK(0x69EE), PACK(0x62B0), PACK(0x6372),
|
|
PACK(0x6134), PACK(0x60F6), PACK(0x65B8), PACK(0x647A), PACK(0x663C),
|
|
PACK(0x67FE), PACK(0x48C0), PACK(0x4902), PACK(0x4B44), PACK(0x4A86),
|
|
PACK(0x4FC8), PACK(0x4E0A), PACK(0x4C4C), PACK(0x4D8E), PACK(0x46D0),
|
|
PACK(0x4712), PACK(0x4554), PACK(0x4496), PACK(0x41D8), PACK(0x401A),
|
|
PACK(0x425C), PACK(0x439E), PACK(0x54E0), PACK(0x5522), PACK(0x5764),
|
|
PACK(0x56A6), PACK(0x53E8), PACK(0x522A), PACK(0x506C), PACK(0x51AE),
|
|
PACK(0x5AF0), PACK(0x5B32), PACK(0x5974), PACK(0x58B6), PACK(0x5DF8),
|
|
PACK(0x5C3A), PACK(0x5E7C), PACK(0x5FBE), PACK(0xE100), PACK(0xE0C2),
|
|
PACK(0xE284), PACK(0xE346), PACK(0xE608), PACK(0xE7CA), PACK(0xE58C),
|
|
PACK(0xE44E), PACK(0xEF10), PACK(0xEED2), PACK(0xEC94), PACK(0xED56),
|
|
PACK(0xE818), PACK(0xE9DA), PACK(0xEB9C), PACK(0xEA5E), PACK(0xFD20),
|
|
PACK(0xFCE2), PACK(0xFEA4), PACK(0xFF66), PACK(0xFA28), PACK(0xFBEA),
|
|
PACK(0xF9AC), PACK(0xF86E), PACK(0xF330), PACK(0xF2F2), PACK(0xF0B4),
|
|
PACK(0xF176), PACK(0xF438), PACK(0xF5FA), PACK(0xF7BC), PACK(0xF67E),
|
|
PACK(0xD940), PACK(0xD882), PACK(0xDAC4), PACK(0xDB06), PACK(0xDE48),
|
|
PACK(0xDF8A), PACK(0xDDCC), PACK(0xDC0E), PACK(0xD750), PACK(0xD692),
|
|
PACK(0xD4D4), PACK(0xD516), PACK(0xD058), PACK(0xD19A), PACK(0xD3DC),
|
|
PACK(0xD21E), PACK(0xC560), PACK(0xC4A2), PACK(0xC6E4), PACK(0xC726),
|
|
PACK(0xC268), PACK(0xC3AA), PACK(0xC1EC), PACK(0xC02E), PACK(0xCB70),
|
|
PACK(0xCAB2), PACK(0xC8F4), PACK(0xC936), PACK(0xCC78), PACK(0xCDBA),
|
|
PACK(0xCFFC), PACK(0xCE3E), PACK(0x9180), PACK(0x9042), PACK(0x9204),
|
|
PACK(0x93C6), PACK(0x9688), PACK(0x974A), PACK(0x950C), PACK(0x94CE),
|
|
PACK(0x9F90), PACK(0x9E52), PACK(0x9C14), PACK(0x9DD6), PACK(0x9898),
|
|
PACK(0x995A), PACK(0x9B1C), PACK(0x9ADE), PACK(0x8DA0), PACK(0x8C62),
|
|
PACK(0x8E24), PACK(0x8FE6), PACK(0x8AA8), PACK(0x8B6A), PACK(0x892C),
|
|
PACK(0x88EE), PACK(0x83B0), PACK(0x8272), PACK(0x8034), PACK(0x81F6),
|
|
PACK(0x84B8), PACK(0x857A), PACK(0x873C), PACK(0x86FE), PACK(0xA9C0),
|
|
PACK(0xA802), PACK(0xAA44), PACK(0xAB86), PACK(0xAEC8), PACK(0xAF0A),
|
|
PACK(0xAD4C), PACK(0xAC8E), PACK(0xA7D0), PACK(0xA612), PACK(0xA454),
|
|
PACK(0xA596), PACK(0xA0D8), PACK(0xA11A), PACK(0xA35C), PACK(0xA29E),
|
|
PACK(0xB5E0), PACK(0xB422), PACK(0xB664), PACK(0xB7A6), PACK(0xB2E8),
|
|
PACK(0xB32A), PACK(0xB16C), PACK(0xB0AE), PACK(0xBBF0), PACK(0xBA32),
|
|
PACK(0xB874), PACK(0xB9B6), PACK(0xBCF8), PACK(0xBD3A), PACK(0xBF7C),
|
|
PACK(0xBEBE)};
|
|
|
|
while (1) {
|
|
Z.hi ^= Htable[n].hi;
|
|
Z.lo ^= Htable[n].lo;
|
|
|
|
if ((u8 *)Xi == xi)
|
|
break;
|
|
|
|
n = *(--xi);
|
|
|
|
rem = (size_t)Z.lo & 0xff;
|
|
Z.lo = (Z.hi << 56) | (Z.lo >> 8);
|
|
Z.hi = (Z.hi >> 8);
|
|
if (sizeof(size_t) == 8)
|
|
Z.hi ^= rem_8bit[rem];
|
|
else
|
|
Z.hi ^= (u64)rem_8bit[rem] << 32;
|
|
}
|
|
|
|
if (is_endian.little) {
|
|
#ifdef BSWAP8
|
|
Xi[0] = BSWAP8(Z.hi);
|
|
Xi[1] = BSWAP8(Z.lo);
|
|
#else
|
|
u8 *p = (u8 *)Xi;
|
|
u32 v;
|
|
v = (u32)(Z.hi >> 32);
|
|
PUTU32(p, v);
|
|
v = (u32)(Z.hi);
|
|
PUTU32(p + 4, v);
|
|
v = (u32)(Z.lo >> 32);
|
|
PUTU32(p + 8, v);
|
|
v = (u32)(Z.lo);
|
|
PUTU32(p + 12, v);
|
|
#endif
|
|
} else {
|
|
Xi[0] = Z.hi;
|
|
Xi[1] = Z.lo;
|
|
}
|
|
}
|
|
#define GCM_MUL(ctx, Xi) gcm_gmult_8bit(ctx->Xi.u, ctx->Htable)
|
|
|
|
#elif TABLE_BITS == 4
|
|
|
|
static void gcm_init_4bit(u128 Htable[16], u64 H[2]) {
|
|
u128 V;
|
|
#if defined(OPENSSL_SMALL_FOOTPRINT)
|
|
int i;
|
|
#endif
|
|
|
|
Htable[0].hi = 0;
|
|
Htable[0].lo = 0;
|
|
V.hi = H[0];
|
|
V.lo = H[1];
|
|
|
|
#if defined(OPENSSL_SMALL_FOOTPRINT)
|
|
for (Htable[8] = V, i = 4; i > 0; i >>= 1) {
|
|
REDUCE1BIT(V);
|
|
Htable[i] = V;
|
|
}
|
|
|
|
for (i = 2; i < 16; i <<= 1) {
|
|
u128 *Hi = Htable + i;
|
|
int j;
|
|
for (V = *Hi, j = 1; j < i; ++j) {
|
|
Hi[j].hi = V.hi ^ Htable[j].hi;
|
|
Hi[j].lo = V.lo ^ Htable[j].lo;
|
|
}
|
|
}
|
|
#else
|
|
Htable[8] = V;
|
|
REDUCE1BIT(V);
|
|
Htable[4] = V;
|
|
REDUCE1BIT(V);
|
|
Htable[2] = V;
|
|
REDUCE1BIT(V);
|
|
Htable[1] = V;
|
|
Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo;
|
|
V = Htable[4];
|
|
Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo;
|
|
Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo;
|
|
Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo;
|
|
V = Htable[8];
|
|
Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo;
|
|
Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo;
|
|
Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo;
|
|
Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo;
|
|
Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo;
|
|
Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo;
|
|
Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo;
|
|
#endif
|
|
#if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm))
|
|
/*
|
|
* ARM assembler expects specific dword order in Htable.
|
|
*/
|
|
{
|
|
int j;
|
|
const union {
|
|
long one;
|
|
char little;
|
|
} is_endian = {1};
|
|
|
|
if (is_endian.little)
|
|
for (j = 0; j < 16; ++j) {
|
|
V = Htable[j];
|
|
Htable[j].hi = V.lo;
|
|
Htable[j].lo = V.hi;
|
|
}
|
|
else
|
|
for (j = 0; j < 16; ++j) {
|
|
V = Htable[j];
|
|
Htable[j].hi = V.lo << 32 | V.lo >> 32;
|
|
Htable[j].lo = V.hi << 32 | V.hi >> 32;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifndef GHASH_ASM
|
|
static const size_t rem_4bit[16] = {
|
|
PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460),
|
|
PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0),
|
|
PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560),
|
|
PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0)};
|
|
|
|
static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) {
|
|
u128 Z;
|
|
int cnt = 15;
|
|
size_t rem, nlo, nhi;
|
|
const union {
|
|
long one;
|
|
char little;
|
|
} is_endian = {1};
|
|
|
|
nlo = ((const u8 *)Xi)[15];
|
|
nhi = nlo >> 4;
|
|
nlo &= 0xf;
|
|
|
|
Z.hi = Htable[nlo].hi;
|
|
Z.lo = Htable[nlo].lo;
|
|
|
|
while (1) {
|
|
rem = (size_t)Z.lo & 0xf;
|
|
Z.lo = (Z.hi << 60) | (Z.lo >> 4);
|
|
Z.hi = (Z.hi >> 4);
|
|
if (sizeof(size_t) == 8)
|
|
Z.hi ^= rem_4bit[rem];
|
|
else
|
|
Z.hi ^= (u64)rem_4bit[rem] << 32;
|
|
|
|
Z.hi ^= Htable[nhi].hi;
|
|
Z.lo ^= Htable[nhi].lo;
|
|
|
|
if (--cnt < 0)
|
|
break;
|
|
|
|
nlo = ((const u8 *)Xi)[cnt];
|
|
nhi = nlo >> 4;
|
|
nlo &= 0xf;
|
|
|
|
rem = (size_t)Z.lo & 0xf;
|
|
Z.lo = (Z.hi << 60) | (Z.lo >> 4);
|
|
Z.hi = (Z.hi >> 4);
|
|
if (sizeof(size_t) == 8)
|
|
Z.hi ^= rem_4bit[rem];
|
|
else
|
|
Z.hi ^= (u64)rem_4bit[rem] << 32;
|
|
|
|
Z.hi ^= Htable[nlo].hi;
|
|
Z.lo ^= Htable[nlo].lo;
|
|
}
|
|
|
|
if (is_endian.little) {
|
|
#ifdef BSWAP8
|
|
Xi[0] = BSWAP8(Z.hi);
|
|
Xi[1] = BSWAP8(Z.lo);
|
|
#else
|
|
u8 *p = (u8 *)Xi;
|
|
u32 v;
|
|
v = (u32)(Z.hi >> 32);
|
|
PUTU32(p, v);
|
|
v = (u32)(Z.hi);
|
|
PUTU32(p + 4, v);
|
|
v = (u32)(Z.lo >> 32);
|
|
PUTU32(p + 8, v);
|
|
v = (u32)(Z.lo);
|
|
PUTU32(p + 12, v);
|
|
#endif
|
|
} else {
|
|
Xi[0] = Z.hi;
|
|
Xi[1] = Z.lo;
|
|
}
|
|
}
|
|
|
|
#if !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
/*
|
|
* Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for
|
|
* details... Compiler-generated code doesn't seem to give any
|
|
* performance improvement, at least not on x86[_64]. It's here
|
|
* mostly as reference and a placeholder for possible future
|
|
* non-trivial optimization[s]...
|
|
*/
|
|
static void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len) {
|
|
u128 Z;
|
|
int cnt;
|
|
size_t rem, nlo, nhi;
|
|
const union {
|
|
long one;
|
|
char little;
|
|
} is_endian = {1};
|
|
|
|
#if 1
|
|
do {
|
|
cnt = 15;
|
|
nlo = ((const u8 *)Xi)[15];
|
|
nlo ^= inp[15];
|
|
nhi = nlo >> 4;
|
|
nlo &= 0xf;
|
|
|
|
Z.hi = Htable[nlo].hi;
|
|
Z.lo = Htable[nlo].lo;
|
|
|
|
while (1) {
|
|
rem = (size_t)Z.lo & 0xf;
|
|
Z.lo = (Z.hi << 60) | (Z.lo >> 4);
|
|
Z.hi = (Z.hi >> 4);
|
|
if (sizeof(size_t) == 8)
|
|
Z.hi ^= rem_4bit[rem];
|
|
else
|
|
Z.hi ^= (u64)rem_4bit[rem] << 32;
|
|
|
|
Z.hi ^= Htable[nhi].hi;
|
|
Z.lo ^= Htable[nhi].lo;
|
|
|
|
if (--cnt < 0)
|
|
break;
|
|
|
|
nlo = ((const u8 *)Xi)[cnt];
|
|
nlo ^= inp[cnt];
|
|
nhi = nlo >> 4;
|
|
nlo &= 0xf;
|
|
|
|
rem = (size_t)Z.lo & 0xf;
|
|
Z.lo = (Z.hi << 60) | (Z.lo >> 4);
|
|
Z.hi = (Z.hi >> 4);
|
|
if (sizeof(size_t) == 8)
|
|
Z.hi ^= rem_4bit[rem];
|
|
else
|
|
Z.hi ^= (u64)rem_4bit[rem] << 32;
|
|
|
|
Z.hi ^= Htable[nlo].hi;
|
|
Z.lo ^= Htable[nlo].lo;
|
|
}
|
|
#else
|
|
/*
|
|
* Extra 256+16 bytes per-key plus 512 bytes shared tables
|
|
* [should] give ~50% improvement... One could have PACK()-ed
|
|
* the rem_8bit even here, but the priority is to minimize
|
|
* cache footprint...
|
|
*/
|
|
u128 Hshr4[16]; /* Htable shifted right by 4 bits */
|
|
u8 Hshl4[16]; /* Htable shifted left by 4 bits */
|
|
static const unsigned short rem_8bit[256] = {
|
|
0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E, 0x0E10,
|
|
0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E, 0x1C20, 0x1DE2,
|
|
0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E, 0x1230, 0x13F2, 0x11B4,
|
|
0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E, 0x3840, 0x3982, 0x3BC4, 0x3A06,
|
|
0x3F48, 0x3E8A, 0x3CCC, 0x3D0E, 0x3650, 0x3792, 0x35D4, 0x3416, 0x3158,
|
|
0x309A, 0x32DC, 0x331E, 0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA,
|
|
0x20EC, 0x212E, 0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC,
|
|
0x2F3E, 0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE,
|
|
0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE, 0x6CA0,
|
|
0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE, 0x62B0, 0x6372,
|
|
0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE, 0x48C0, 0x4902, 0x4B44,
|
|
0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E, 0x46D0, 0x4712, 0x4554, 0x4496,
|
|
0x41D8, 0x401A, 0x425C, 0x439E, 0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8,
|
|
0x522A, 0x506C, 0x51AE, 0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A,
|
|
0x5E7C, 0x5FBE, 0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C,
|
|
0xE44E, 0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E,
|
|
0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E, 0xF330,
|
|
0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E, 0xD940, 0xD882,
|
|
0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E, 0xD750, 0xD692, 0xD4D4,
|
|
0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E, 0xC560, 0xC4A2, 0xC6E4, 0xC726,
|
|
0xC268, 0xC3AA, 0xC1EC, 0xC02E, 0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78,
|
|
0xCDBA, 0xCFFC, 0xCE3E, 0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A,
|
|
0x950C, 0x94CE, 0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C,
|
|
0x9ADE, 0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE,
|
|
0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE, 0xA9C0,
|
|
0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E, 0xA7D0, 0xA612,
|
|
0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E, 0xB5E0, 0xB422, 0xB664,
|
|
0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE, 0xBBF0, 0xBA32, 0xB874, 0xB9B6,
|
|
0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE};
|
|
/*
|
|
* This pre-processing phase slows down procedure by approximately
|
|
* same time as it makes each loop spin faster. In other words
|
|
* single block performance is approximately same as straightforward
|
|
* "4-bit" implementation, and then it goes only faster...
|
|
*/
|
|
for (cnt = 0; cnt < 16; ++cnt) {
|
|
Z.hi = Htable[cnt].hi;
|
|
Z.lo = Htable[cnt].lo;
|
|
Hshr4[cnt].lo = (Z.hi << 60) | (Z.lo >> 4);
|
|
Hshr4[cnt].hi = (Z.hi >> 4);
|
|
Hshl4[cnt] = (u8)(Z.lo << 4);
|
|
}
|
|
|
|
do {
|
|
for (Z.lo = 0, Z.hi = 0, cnt = 15; cnt; --cnt) {
|
|
nlo = ((const u8 *)Xi)[cnt];
|
|
nlo ^= inp[cnt];
|
|
nhi = nlo >> 4;
|
|
nlo &= 0xf;
|
|
|
|
Z.hi ^= Htable[nlo].hi;
|
|
Z.lo ^= Htable[nlo].lo;
|
|
|
|
rem = (size_t)Z.lo & 0xff;
|
|
|
|
Z.lo = (Z.hi << 56) | (Z.lo >> 8);
|
|
Z.hi = (Z.hi >> 8);
|
|
|
|
Z.hi ^= Hshr4[nhi].hi;
|
|
Z.lo ^= Hshr4[nhi].lo;
|
|
Z.hi ^= (u64)rem_8bit[rem ^ Hshl4[nhi]] << 48;
|
|
}
|
|
|
|
nlo = ((const u8 *)Xi)[0];
|
|
nlo ^= inp[0];
|
|
nhi = nlo >> 4;
|
|
nlo &= 0xf;
|
|
|
|
Z.hi ^= Htable[nlo].hi;
|
|
Z.lo ^= Htable[nlo].lo;
|
|
|
|
rem = (size_t)Z.lo & 0xf;
|
|
|
|
Z.lo = (Z.hi << 60) | (Z.lo >> 4);
|
|
Z.hi = (Z.hi >> 4);
|
|
|
|
Z.hi ^= Htable[nhi].hi;
|
|
Z.lo ^= Htable[nhi].lo;
|
|
Z.hi ^= ((u64)rem_8bit[rem << 4]) << 48;
|
|
#endif
|
|
|
|
if (is_endian.little) {
|
|
#ifdef BSWAP8
|
|
Xi[0] = BSWAP8(Z.hi);
|
|
Xi[1] = BSWAP8(Z.lo);
|
|
#else
|
|
u8 *p = (u8 *)Xi;
|
|
u32 v;
|
|
v = (u32)(Z.hi >> 32);
|
|
PUTU32(p, v);
|
|
v = (u32)(Z.hi);
|
|
PUTU32(p + 4, v);
|
|
v = (u32)(Z.lo >> 32);
|
|
PUTU32(p + 8, v);
|
|
v = (u32)(Z.lo);
|
|
PUTU32(p + 12, v);
|
|
#endif
|
|
} else {
|
|
Xi[0] = Z.hi;
|
|
Xi[1] = Z.lo;
|
|
}
|
|
} while (inp += 16, len -= 16);
|
|
}
|
|
#endif
|
|
#else
|
|
void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len);
|
|
#endif
|
|
|
|
#define GCM_MUL(ctx, Xi) gcm_gmult_4bit(ctx->Xi.u, ctx->Htable)
|
|
#if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
#define GHASH(ctx, in, len) gcm_ghash_4bit((ctx)->Xi.u, (ctx)->Htable, in, len)
|
|
/* GHASH_CHUNK is "stride parameter" missioned to mitigate cache
|
|
* trashing effect. In other words idea is to hash data while it's
|
|
* still in L1 cache after encryption pass... */
|
|
#define GHASH_CHUNK (3 * 1024)
|
|
#endif
|
|
|
|
#else /* TABLE_BITS */
|
|
|
|
static void gcm_gmult_1bit(u64 Xi[2], const u64 H[2]) {
|
|
u128 V, Z = {0, 0};
|
|
long X;
|
|
unsigned int i, j;
|
|
const long *xi = (const long *)Xi;
|
|
const union {
|
|
long one;
|
|
char little;
|
|
} is_endian = {1};
|
|
|
|
V.hi = H[0]; /* H is in host byte order, no byte swapping */
|
|
V.lo = H[1];
|
|
|
|
for (j = 0; j < 16 / sizeof(long); ++j) {
|
|
if (is_endian.little) {
|
|
if (sizeof(long) == 8) {
|
|
#ifdef BSWAP8
|
|
X = (long)(BSWAP8(xi[j]));
|
|
#else
|
|
const u8 *p = (const u8 *)(xi + j);
|
|
X = (long)((u64)GETU32(p) << 32 | GETU32(p + 4));
|
|
#endif
|
|
} else {
|
|
const u8 *p = (const u8 *)(xi + j);
|
|
X = (long)GETU32(p);
|
|
}
|
|
} else
|
|
X = xi[j];
|
|
|
|
for (i = 0; i < 8 * sizeof(long); ++i, X <<= 1) {
|
|
u64 M = (u64)(X >> (8 * sizeof(long) - 1));
|
|
Z.hi ^= V.hi & M;
|
|
Z.lo ^= V.lo & M;
|
|
|
|
REDUCE1BIT(V);
|
|
}
|
|
}
|
|
|
|
if (is_endian.little) {
|
|
#ifdef BSWAP8
|
|
Xi[0] = BSWAP8(Z.hi);
|
|
Xi[1] = BSWAP8(Z.lo);
|
|
#else
|
|
u8 *p = (u8 *)Xi;
|
|
u32 v;
|
|
v = (u32)(Z.hi >> 32);
|
|
PUTU32(p, v);
|
|
v = (u32)(Z.hi);
|
|
PUTU32(p + 4, v);
|
|
v = (u32)(Z.lo >> 32);
|
|
PUTU32(p + 8, v);
|
|
v = (u32)(Z.lo);
|
|
PUTU32(p + 12, v);
|
|
#endif
|
|
} else {
|
|
Xi[0] = Z.hi;
|
|
Xi[1] = Z.lo;
|
|
}
|
|
}
|
|
#define GCM_MUL(ctx, Xi) gcm_gmult_1bit(ctx->Xi.u, ctx->H.u)
|
|
|
|
#endif
|
|
|
|
#if TABLE_BITS == 4 && defined(GHASH_ASM)
|
|
#if !defined(I386_ONLY) && \
|
|
(defined(__i386) || defined(__i386__) || defined(__x86_64) || \
|
|
defined(__x86_64__) || defined(_M_IX86) || defined(_M_AMD64) || \
|
|
defined(_M_X64))
|
|
#define GHASH_ASM_X86_OR_64
|
|
#define GCM_FUNCREF_4BIT
|
|
extern unsigned int OPENSSL_ia32cap_P[2];
|
|
|
|
void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]);
|
|
void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_ghash_clmul(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len);
|
|
|
|
#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
|
|
#define GHASH_ASM_X86
|
|
void gcm_gmult_4bit_mmx(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_ghash_4bit_mmx(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len);
|
|
|
|
void gcm_gmult_4bit_x86(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_ghash_4bit_x86(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len);
|
|
#endif
|
|
#elif defined(__arm__) || defined(__arm)
|
|
#include "arm_arch.h"
|
|
#if __ARM_ARCH__ >= 7
|
|
#define GHASH_ASM_ARM
|
|
#define GCM_FUNCREF_4BIT
|
|
void gcm_gmult_neon(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_ghash_neon(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef GCM_FUNCREF_4BIT
|
|
#undef GCM_MUL
|
|
#define GCM_MUL(ctx, Xi) (*gcm_gmult_p)(ctx->Xi.u, ctx->Htable)
|
|
#ifdef GHASH
|
|
#undef GHASH
|
|
#define GHASH(ctx, in, len) (*gcm_ghash_p)(ctx->Xi.u, ctx->Htable, in, len)
|
|
#endif
|
|
#endif
|
|
|
|
static void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key,
|
|
block128_f block) {
|
|
const union {
|
|
long one;
|
|
char little;
|
|
} is_endian = {1};
|
|
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
ctx->block = block;
|
|
ctx->key = key;
|
|
|
|
(*block)(ctx->H.c, ctx->H.c, key);
|
|
|
|
if (is_endian.little) {
|
|
/* H is stored in host byte order */
|
|
#ifdef BSWAP8
|
|
ctx->H.u[0] = BSWAP8(ctx->H.u[0]);
|
|
ctx->H.u[1] = BSWAP8(ctx->H.u[1]);
|
|
#else
|
|
u8 *p = ctx->H.c;
|
|
u64 hi, lo;
|
|
hi = (u64)GETU32(p) << 32 | GETU32(p + 4);
|
|
lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12);
|
|
ctx->H.u[0] = hi;
|
|
ctx->H.u[1] = lo;
|
|
#endif
|
|
}
|
|
|
|
#if TABLE_BITS == 8
|
|
gcm_init_8bit(ctx->Htable, ctx->H.u);
|
|
#elif TABLE_BITS == 4
|
|
#if defined(GHASH_ASM_X86_OR_64)
|
|
#if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2)
|
|
if (OPENSSL_ia32cap_P[0] & (1 << 24) && /* check FXSR bit */
|
|
OPENSSL_ia32cap_P[1] & (1 << 1)) { /* check PCLMULQDQ bit */
|
|
gcm_init_clmul(ctx->Htable, ctx->H.u);
|
|
ctx->gmult = gcm_gmult_clmul;
|
|
ctx->ghash = gcm_ghash_clmul;
|
|
return;
|
|
}
|
|
#endif
|
|
gcm_init_4bit(ctx->Htable, ctx->H.u);
|
|
#if defined(GHASH_ASM_X86) /* x86 only */
|
|
#if defined(OPENSSL_IA32_SSE2)
|
|
if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */
|
|
#else
|
|
if (OPENSSL_ia32cap_P[0] & (1 << 23)) { /* check MMX bit */
|
|
#endif
|
|
ctx->gmult = gcm_gmult_4bit_mmx;
|
|
ctx->ghash = gcm_ghash_4bit_mmx;
|
|
} else {
|
|
ctx->gmult = gcm_gmult_4bit_x86;
|
|
ctx->ghash = gcm_ghash_4bit_x86;
|
|
}
|
|
#else
|
|
ctx->gmult = gcm_gmult_4bit;
|
|
ctx->ghash = gcm_ghash_4bit;
|
|
#endif
|
|
#elif defined(GHASH_ASM_ARM)
|
|
if (OPENSSL_armcap_P & ARMV7_NEON) {
|
|
ctx->gmult = gcm_gmult_neon;
|
|
ctx->ghash = gcm_ghash_neon;
|
|
} else {
|
|
gcm_init_4bit(ctx->Htable, ctx->H.u);
|
|
ctx->gmult = gcm_gmult_4bit;
|
|
ctx->ghash = gcm_ghash_4bit;
|
|
}
|
|
#else
|
|
gcm_init_4bit(ctx->Htable, ctx->H.u);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv,
|
|
size_t len) {
|
|
const union {
|
|
long one;
|
|
char little;
|
|
} is_endian = {1};
|
|
unsigned int ctr;
|
|
#ifdef GCM_FUNCREF_4BIT
|
|
void (*gcm_gmult_p)(u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
|
|
#endif
|
|
|
|
ctx->Yi.u[0] = 0;
|
|
ctx->Yi.u[1] = 0;
|
|
ctx->Xi.u[0] = 0;
|
|
ctx->Xi.u[1] = 0;
|
|
ctx->len.u[0] = 0; /* AAD length */
|
|
ctx->len.u[1] = 0; /* message length */
|
|
ctx->ares = 0;
|
|
ctx->mres = 0;
|
|
|
|
if (len == 12) {
|
|
memcpy(ctx->Yi.c, iv, 12);
|
|
ctx->Yi.c[15] = 1;
|
|
ctr = 1;
|
|
} else {
|
|
size_t i;
|
|
u64 len0 = len;
|
|
|
|
while (len >= 16) {
|
|
for (i = 0; i < 16; ++i)
|
|
ctx->Yi.c[i] ^= iv[i];
|
|
GCM_MUL(ctx, Yi);
|
|
iv += 16;
|
|
len -= 16;
|
|
}
|
|
if (len) {
|
|
for (i = 0; i < len; ++i)
|
|
ctx->Yi.c[i] ^= iv[i];
|
|
GCM_MUL(ctx, Yi);
|
|
}
|
|
len0 <<= 3;
|
|
if (is_endian.little) {
|
|
#ifdef BSWAP8
|
|
ctx->Yi.u[1] ^= BSWAP8(len0);
|
|
#else
|
|
ctx->Yi.c[8] ^= (u8)(len0 >> 56);
|
|
ctx->Yi.c[9] ^= (u8)(len0 >> 48);
|
|
ctx->Yi.c[10] ^= (u8)(len0 >> 40);
|
|
ctx->Yi.c[11] ^= (u8)(len0 >> 32);
|
|
ctx->Yi.c[12] ^= (u8)(len0 >> 24);
|
|
ctx->Yi.c[13] ^= (u8)(len0 >> 16);
|
|
ctx->Yi.c[14] ^= (u8)(len0 >> 8);
|
|
ctx->Yi.c[15] ^= (u8)(len0);
|
|
#endif
|
|
} else
|
|
ctx->Yi.u[1] ^= len0;
|
|
|
|
GCM_MUL(ctx, Yi);
|
|
|
|
if (is_endian.little)
|
|
ctr = GETU32(ctx->Yi.c + 12);
|
|
else
|
|
ctr = ctx->Yi.d[3];
|
|
}
|
|
|
|
(*ctx->block)(ctx->Yi.c, ctx->EK0.c, ctx->key);
|
|
++ctr;
|
|
if (is_endian.little) {
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
} else
|
|
ctx->Yi.d[3] = ctr;
|
|
}
|
|
|
|
static int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad,
|
|
size_t len) {
|
|
size_t i;
|
|
unsigned int n;
|
|
u64 alen = ctx->len.u[0];
|
|
#ifdef GCM_FUNCREF_4BIT
|
|
void (*gcm_gmult_p)(u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
|
|
#ifdef GHASH
|
|
void (*gcm_ghash_p)(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len) = ctx->ghash;
|
|
#endif
|
|
#endif
|
|
|
|
if (ctx->len.u[1])
|
|
return -2;
|
|
|
|
alen += len;
|
|
if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))
|
|
return -1;
|
|
ctx->len.u[0] = alen;
|
|
|
|
n = ctx->ares;
|
|
if (n) {
|
|
while (n && len) {
|
|
ctx->Xi.c[n] ^= *(aad++);
|
|
--len;
|
|
n = (n + 1) % 16;
|
|
}
|
|
if (n == 0)
|
|
GCM_MUL(ctx, Xi);
|
|
else {
|
|
ctx->ares = n;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#ifdef GHASH
|
|
if ((i = (len & (size_t)-16))) {
|
|
GHASH(ctx, aad, i);
|
|
aad += i;
|
|
len -= i;
|
|
}
|
|
#else
|
|
while (len >= 16) {
|
|
for (i = 0; i < 16; ++i)
|
|
ctx->Xi.c[i] ^= aad[i];
|
|
GCM_MUL(ctx, Xi);
|
|
aad += 16;
|
|
len -= 16;
|
|
}
|
|
#endif
|
|
if (len) {
|
|
n = (unsigned int)len;
|
|
for (i = 0; i < len; ++i)
|
|
ctx->Xi.c[i] ^= aad[i];
|
|
}
|
|
|
|
ctx->ares = n;
|
|
return 0;
|
|
}
|
|
|
|
static int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const unsigned char *in,
|
|
unsigned char *out, size_t len) {
|
|
const union {
|
|
long one;
|
|
char little;
|
|
} is_endian = {1};
|
|
unsigned int n, ctr;
|
|
size_t i;
|
|
u64 mlen = ctx->len.u[1];
|
|
block128_f block = ctx->block;
|
|
void *key = ctx->key;
|
|
#ifdef GCM_FUNCREF_4BIT
|
|
void (*gcm_gmult_p)(u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
|
|
#ifdef GHASH
|
|
void (*gcm_ghash_p)(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len) = ctx->ghash;
|
|
#endif
|
|
#endif
|
|
|
|
#if 0
|
|
n = (unsigned int)mlen%16; /* alternative to ctx->mres */
|
|
#endif
|
|
mlen += len;
|
|
if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
|
|
return -1;
|
|
ctx->len.u[1] = mlen;
|
|
|
|
if (ctx->ares) {
|
|
/* First call to encrypt finalizes GHASH(AAD) */
|
|
GCM_MUL(ctx, Xi);
|
|
ctx->ares = 0;
|
|
}
|
|
|
|
if (is_endian.little)
|
|
ctr = GETU32(ctx->Yi.c + 12);
|
|
else
|
|
ctr = ctx->Yi.d[3];
|
|
|
|
n = ctx->mres;
|
|
#if !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
if (16 % sizeof(size_t) == 0)
|
|
do { /* always true actually */
|
|
if (n) {
|
|
while (n && len) {
|
|
ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n];
|
|
--len;
|
|
n = (n + 1) % 16;
|
|
}
|
|
if (n == 0)
|
|
GCM_MUL(ctx, Xi);
|
|
else {
|
|
ctx->mres = n;
|
|
return 0;
|
|
}
|
|
}
|
|
#if defined(STRICT_ALIGNMENT)
|
|
if (((size_t)in | (size_t)out) % sizeof(size_t) != 0)
|
|
break;
|
|
#endif
|
|
#if defined(GHASH) && defined(GHASH_CHUNK)
|
|
while (len >= GHASH_CHUNK) {
|
|
size_t j = GHASH_CHUNK;
|
|
|
|
while (j) {
|
|
(*block)(ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (is_endian.little) {
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
} else
|
|
ctx->Yi.d[3] = ctr;
|
|
for (i = 0; i < 16; i += sizeof(size_t))
|
|
*(size_t *)(out + i) =
|
|
*(size_t *)(in + i) ^ *(size_t *)(ctx->EKi.c + i);
|
|
out += 16;
|
|
in += 16;
|
|
j -= 16;
|
|
}
|
|
GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK);
|
|
len -= GHASH_CHUNK;
|
|
}
|
|
if ((i = (len & (size_t)-16))) {
|
|
size_t j = i;
|
|
|
|
while (len >= 16) {
|
|
(*block)(ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (is_endian.little) {
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
} else
|
|
ctx->Yi.d[3] = ctr;
|
|
for (i = 0; i < 16; i += sizeof(size_t))
|
|
*(size_t *)(out + i) =
|
|
*(size_t *)(in + i) ^ *(size_t *)(ctx->EKi.c + i);
|
|
out += 16;
|
|
in += 16;
|
|
len -= 16;
|
|
}
|
|
GHASH(ctx, out - j, j);
|
|
}
|
|
#else
|
|
while (len >= 16) {
|
|
(*block)(ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (is_endian.little) {
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
} else
|
|
ctx->Yi.d[3] = ctr;
|
|
for (i = 0; i < 16; i += sizeof(size_t))
|
|
*(size_t *)(ctx->Xi.c + i) ^= *(size_t *)(out + i) =
|
|
*(size_t *)(in + i) ^ *(size_t *)(ctx->EKi.c + i);
|
|
GCM_MUL(ctx, Xi);
|
|
out += 16;
|
|
in += 16;
|
|
len -= 16;
|
|
}
|
|
#endif
|
|
if (len) {
|
|
(*block)(ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (is_endian.little) {
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
} else
|
|
ctx->Yi.d[3] = ctr;
|
|
while (len--) {
|
|
ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n];
|
|
++n;
|
|
}
|
|
}
|
|
|
|
ctx->mres = n;
|
|
return 0;
|
|
} while (0);
|
|
#endif
|
|
for (i = 0; i < len; ++i) {
|
|
if (n == 0) {
|
|
(*block)(ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (is_endian.little) {
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
} else
|
|
ctx->Yi.d[3] = ctr;
|
|
}
|
|
ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n];
|
|
n = (n + 1) % 16;
|
|
if (n == 0)
|
|
GCM_MUL(ctx, Xi);
|
|
}
|
|
|
|
ctx->mres = n;
|
|
return 0;
|
|
}
|
|
|
|
static int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const unsigned char *in,
|
|
unsigned char *out, size_t len) {
|
|
const union {
|
|
long one;
|
|
char little;
|
|
} is_endian = {1};
|
|
unsigned int n, ctr;
|
|
size_t i;
|
|
u64 mlen = ctx->len.u[1];
|
|
block128_f block = ctx->block;
|
|
void *key = ctx->key;
|
|
#ifdef GCM_FUNCREF_4BIT
|
|
void (*gcm_gmult_p)(u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
|
|
#ifdef GHASH
|
|
void (*gcm_ghash_p)(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len) = ctx->ghash;
|
|
#endif
|
|
#endif
|
|
|
|
mlen += len;
|
|
if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
|
|
return -1;
|
|
ctx->len.u[1] = mlen;
|
|
|
|
if (ctx->ares) {
|
|
/* First call to decrypt finalizes GHASH(AAD) */
|
|
GCM_MUL(ctx, Xi);
|
|
ctx->ares = 0;
|
|
}
|
|
|
|
if (is_endian.little)
|
|
ctr = GETU32(ctx->Yi.c + 12);
|
|
else
|
|
ctr = ctx->Yi.d[3];
|
|
|
|
n = ctx->mres;
|
|
#if !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
if (16 % sizeof(size_t) == 0)
|
|
do { /* always true actually */
|
|
if (n) {
|
|
while (n && len) {
|
|
u8 c = *(in++);
|
|
*(out++) = c ^ ctx->EKi.c[n];
|
|
ctx->Xi.c[n] ^= c;
|
|
--len;
|
|
n = (n + 1) % 16;
|
|
}
|
|
if (n == 0)
|
|
GCM_MUL(ctx, Xi);
|
|
else {
|
|
ctx->mres = n;
|
|
return 0;
|
|
}
|
|
}
|
|
#if defined(STRICT_ALIGNMENT)
|
|
if (((size_t)in | (size_t)out) % sizeof(size_t) != 0)
|
|
break;
|
|
#endif
|
|
#if defined(GHASH) && defined(GHASH_CHUNK)
|
|
while (len >= GHASH_CHUNK) {
|
|
size_t j = GHASH_CHUNK;
|
|
|
|
GHASH(ctx, in, GHASH_CHUNK);
|
|
while (j) {
|
|
(*block)(ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (is_endian.little) {
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
} else
|
|
ctx->Yi.d[3] = ctr;
|
|
for (i = 0; i < 16; i += sizeof(size_t))
|
|
*(size_t *)(out + i) =
|
|
*(size_t *)(in + i) ^ *(size_t *)(ctx->EKi.c + i);
|
|
out += 16;
|
|
in += 16;
|
|
j -= 16;
|
|
}
|
|
len -= GHASH_CHUNK;
|
|
}
|
|
if ((i = (len & (size_t)-16))) {
|
|
GHASH(ctx, in, i);
|
|
while (len >= 16) {
|
|
(*block)(ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (is_endian.little) {
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
} else
|
|
ctx->Yi.d[3] = ctr;
|
|
for (i = 0; i < 16; i += sizeof(size_t))
|
|
*(size_t *)(out + i) =
|
|
*(size_t *)(in + i) ^ *(size_t *)(ctx->EKi.c + i);
|
|
out += 16;
|
|
in += 16;
|
|
len -= 16;
|
|
}
|
|
}
|
|
#else
|
|
while (len >= 16) {
|
|
(*block)(ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (is_endian.little) {
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
} else
|
|
ctx->Yi.d[3] = ctr;
|
|
for (i = 0; i < 16; i += sizeof(size_t)) {
|
|
size_t c = *(size_t *)(in + i);
|
|
*(size_t *)(out + i) = c ^ *(size_t *)(ctx->EKi.c + i);
|
|
*(size_t *)(ctx->Xi.c + i) ^= c;
|
|
}
|
|
GCM_MUL(ctx, Xi);
|
|
out += 16;
|
|
in += 16;
|
|
len -= 16;
|
|
}
|
|
#endif
|
|
if (len) {
|
|
(*block)(ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (is_endian.little) {
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
} else
|
|
ctx->Yi.d[3] = ctr;
|
|
while (len--) {
|
|
u8 c = in[n];
|
|
ctx->Xi.c[n] ^= c;
|
|
out[n] = c ^ ctx->EKi.c[n];
|
|
++n;
|
|
}
|
|
}
|
|
|
|
ctx->mres = n;
|
|
return 0;
|
|
} while (0);
|
|
#endif
|
|
for (i = 0; i < len; ++i) {
|
|
u8 c;
|
|
if (n == 0) {
|
|
(*block)(ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (is_endian.little) {
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
} else
|
|
ctx->Yi.d[3] = ctr;
|
|
}
|
|
c = in[i];
|
|
out[i] = c ^ ctx->EKi.c[n];
|
|
ctx->Xi.c[n] ^= c;
|
|
n = (n + 1) % 16;
|
|
if (n == 0)
|
|
GCM_MUL(ctx, Xi);
|
|
}
|
|
|
|
ctx->mres = n;
|
|
return 0;
|
|
}
|
|
|
|
static int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
|
|
const unsigned char *in,
|
|
unsigned char *out, size_t len,
|
|
ctr128_f stream) {
|
|
const union {
|
|
long one;
|
|
char little;
|
|
} is_endian = {1};
|
|
unsigned int n, ctr;
|
|
size_t i;
|
|
u64 mlen = ctx->len.u[1];
|
|
void *key = ctx->key;
|
|
#ifdef GCM_FUNCREF_4BIT
|
|
void (*gcm_gmult_p)(u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
|
|
#ifdef GHASH
|
|
void (*gcm_ghash_p)(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len) = ctx->ghash;
|
|
#endif
|
|
#endif
|
|
|
|
mlen += len;
|
|
if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
|
|
return -1;
|
|
ctx->len.u[1] = mlen;
|
|
|
|
if (ctx->ares) {
|
|
/* First call to encrypt finalizes GHASH(AAD) */
|
|
GCM_MUL(ctx, Xi);
|
|
ctx->ares = 0;
|
|
}
|
|
|
|
if (is_endian.little)
|
|
ctr = GETU32(ctx->Yi.c + 12);
|
|
else
|
|
ctr = ctx->Yi.d[3];
|
|
|
|
n = ctx->mres;
|
|
if (n) {
|
|
while (n && len) {
|
|
ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n];
|
|
--len;
|
|
n = (n + 1) % 16;
|
|
}
|
|
if (n == 0)
|
|
GCM_MUL(ctx, Xi);
|
|
else {
|
|
ctx->mres = n;
|
|
return 0;
|
|
}
|
|
}
|
|
#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
while (len >= GHASH_CHUNK) {
|
|
(*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c);
|
|
ctr += GHASH_CHUNK / 16;
|
|
if (is_endian.little) {
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
} else
|
|
ctx->Yi.d[3] = ctr;
|
|
GHASH(ctx, out, GHASH_CHUNK);
|
|
out += GHASH_CHUNK;
|
|
in += GHASH_CHUNK;
|
|
len -= GHASH_CHUNK;
|
|
}
|
|
#endif
|
|
i = (len & (size_t)-16);
|
|
if (i) {
|
|
size_t j = i / 16;
|
|
|
|
(*stream)(in, out, j, key, ctx->Yi.c);
|
|
ctr += (unsigned int)j;
|
|
if (is_endian.little) {
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
} else
|
|
ctx->Yi.d[3] = ctr;
|
|
in += i;
|
|
len -= i;
|
|
#if defined(GHASH)
|
|
GHASH(ctx, out, i);
|
|
out += i;
|
|
#else
|
|
while (j--) {
|
|
for (i = 0; i < 16; ++i)
|
|
ctx->Xi.c[i] ^= out[i];
|
|
GCM_MUL(ctx, Xi);
|
|
out += 16;
|
|
}
|
|
#endif
|
|
}
|
|
if (len) {
|
|
(*ctx->block)(ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (is_endian.little) {
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
} else
|
|
ctx->Yi.d[3] = ctr;
|
|
while (len--) {
|
|
ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n];
|
|
++n;
|
|
}
|
|
}
|
|
|
|
ctx->mres = n;
|
|
return 0;
|
|
}
|
|
|
|
static int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
|
|
const unsigned char *in,
|
|
unsigned char *out, size_t len,
|
|
ctr128_f stream) {
|
|
const union {
|
|
long one;
|
|
char little;
|
|
} is_endian = {1};
|
|
unsigned int n, ctr;
|
|
size_t i;
|
|
u64 mlen = ctx->len.u[1];
|
|
void *key = ctx->key;
|
|
#ifdef GCM_FUNCREF_4BIT
|
|
void (*gcm_gmult_p)(u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
|
|
#ifdef GHASH
|
|
void (*gcm_ghash_p)(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len) = ctx->ghash;
|
|
#endif
|
|
#endif
|
|
|
|
mlen += len;
|
|
if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
|
|
return -1;
|
|
ctx->len.u[1] = mlen;
|
|
|
|
if (ctx->ares) {
|
|
/* First call to decrypt finalizes GHASH(AAD) */
|
|
GCM_MUL(ctx, Xi);
|
|
ctx->ares = 0;
|
|
}
|
|
|
|
if (is_endian.little)
|
|
ctr = GETU32(ctx->Yi.c + 12);
|
|
else
|
|
ctr = ctx->Yi.d[3];
|
|
|
|
n = ctx->mres;
|
|
if (n) {
|
|
while (n && len) {
|
|
u8 c = *(in++);
|
|
*(out++) = c ^ ctx->EKi.c[n];
|
|
ctx->Xi.c[n] ^= c;
|
|
--len;
|
|
n = (n + 1) % 16;
|
|
}
|
|
if (n == 0)
|
|
GCM_MUL(ctx, Xi);
|
|
else {
|
|
ctx->mres = n;
|
|
return 0;
|
|
}
|
|
}
|
|
#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
while (len >= GHASH_CHUNK) {
|
|
GHASH(ctx, in, GHASH_CHUNK);
|
|
(*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c);
|
|
ctr += GHASH_CHUNK / 16;
|
|
if (is_endian.little) {
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
} else
|
|
ctx->Yi.d[3] = ctr;
|
|
out += GHASH_CHUNK;
|
|
in += GHASH_CHUNK;
|
|
len -= GHASH_CHUNK;
|
|
}
|
|
#endif
|
|
i = (len & (size_t)-16);
|
|
if (i) {
|
|
size_t j = i / 16;
|
|
|
|
#if defined(GHASH)
|
|
GHASH(ctx, in, i);
|
|
#else
|
|
while (j--) {
|
|
size_t k;
|
|
for (k = 0; k < 16; ++k)
|
|
ctx->Xi.c[k] ^= in[k];
|
|
GCM_MUL(ctx, Xi);
|
|
in += 16;
|
|
}
|
|
j = i / 16;
|
|
in -= i;
|
|
#endif
|
|
(*stream)(in, out, j, key, ctx->Yi.c);
|
|
ctr += (unsigned int)j;
|
|
if (is_endian.little) {
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
} else
|
|
ctx->Yi.d[3] = ctr;
|
|
out += i;
|
|
in += i;
|
|
len -= i;
|
|
}
|
|
if (len) {
|
|
(*ctx->block)(ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (is_endian.little) {
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
} else
|
|
ctx->Yi.d[3] = ctr;
|
|
while (len--) {
|
|
u8 c = in[n];
|
|
ctx->Xi.c[n] ^= c;
|
|
out[n] = c ^ ctx->EKi.c[n];
|
|
++n;
|
|
}
|
|
}
|
|
|
|
ctx->mres = n;
|
|
return 0;
|
|
}
|
|
|
|
static int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag,
|
|
size_t len) {
|
|
const union {
|
|
long one;
|
|
char little;
|
|
} is_endian = {1};
|
|
u64 alen = ctx->len.u[0] << 3;
|
|
u64 clen = ctx->len.u[1] << 3;
|
|
#ifdef GCM_FUNCREF_4BIT
|
|
void (*gcm_gmult_p)(u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
|
|
#endif
|
|
|
|
if (ctx->mres || ctx->ares)
|
|
GCM_MUL(ctx, Xi);
|
|
|
|
if (is_endian.little) {
|
|
#ifdef BSWAP8
|
|
alen = BSWAP8(alen);
|
|
clen = BSWAP8(clen);
|
|
#else
|
|
u8 *p = ctx->len.c;
|
|
|
|
ctx->len.u[0] = alen;
|
|
ctx->len.u[1] = clen;
|
|
|
|
alen = (u64)GETU32(p) << 32 | GETU32(p + 4);
|
|
clen = (u64)GETU32(p + 8) << 32 | GETU32(p + 12);
|
|
#endif
|
|
}
|
|
|
|
ctx->Xi.u[0] ^= alen;
|
|
ctx->Xi.u[1] ^= clen;
|
|
GCM_MUL(ctx, Xi);
|
|
|
|
ctx->Xi.u[0] ^= ctx->EK0.u[0];
|
|
ctx->Xi.u[1] ^= ctx->EK0.u[1];
|
|
|
|
if (tag && len <= sizeof(ctx->Xi))
|
|
return memcmp(ctx->Xi.c, tag, len);
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
static void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag,
|
|
size_t len) {
|
|
CRYPTO_gcm128_finish(ctx, NULL, 0);
|
|
memcpy(tag, ctx->Xi.c, len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c));
|
|
}
|
|
|
|
int rk_sm4_gcm_encrypt(struct sm4_ae_in *in, struct sm4_ae_out *out,
|
|
const int enc) {
|
|
GCM128_CONTEXT ctx;
|
|
sm4_context sm4_ctx;
|
|
|
|
if (in == NULL || out == NULL)
|
|
return -1;
|
|
|
|
rk_sm4_setkey_enc(&sm4_ctx, in->key);
|
|
CRYPTO_gcm128_init(&ctx, &sm4_ctx, rk_rk_sm4_crypt_ecb);
|
|
CRYPTO_gcm128_setiv(&ctx, in->iv, in->iv_len);
|
|
if (in->aad_len)
|
|
CRYPTO_gcm128_aad(&ctx, in->aad, in->aad_len);
|
|
if (enc) {
|
|
if (in->src_len)
|
|
CRYPTO_gcm128_encrypt(&ctx, in->src, out->dest, in->src_len);
|
|
CRYPTO_gcm128_tag(&ctx, out->tag, in->tag_size);
|
|
return 0;
|
|
} else {
|
|
if (in->src_len)
|
|
CRYPTO_gcm128_decrypt(&ctx, in->src, out->dest, in->src_len);
|
|
CRYPTO_gcm128_tag(&ctx, out->tag, in->tag_size);
|
|
return 0;
|
|
}
|
|
}
|