luckfox-pico-sdk/media/security/librkcrypto/test/c_mode/aes_ccm.c
2023-08-08 20:36:47 +08:00

582 lines
14 KiB
C

#include "aes_core.h"
#include "aes_locl.h"
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define CCM_DEBUG 0
#if 1
typedef void (*block128_f)(const unsigned char in[16], unsigned char out[16],
const void *key);
typedef void (*ccm128_f)(const unsigned char *in, unsigned char *out,
size_t blocks, const void *key,
const unsigned char ivec[16], unsigned char cmac[16]);
struct ccm128_context {
union {
u64 u[2];
u8 c[16];
} nonce, cmac;
u64 blocks;
block128_f block;
void *key;
};
//#define U64(C) C##UL
typedef struct ccm128_context CCM128_CONTEXT;
/* First you setup M and L parameters and pass the key schedule.
* This is called once per session setup... */
static void rk_crypto_ccm128_init(CCM128_CONTEXT *ctx, unsigned int M,
unsigned int L, void *key, block128_f block) {
// printf("m = %d,L = %d\n",M,L);
memset(ctx->nonce.c, 0, sizeof(ctx->nonce.c));
ctx->nonce.c[0] = ((u8)(L - 1) & 7) | (u8)(((M - 2) / 2) & 7) << 3;
ctx->blocks = 0;
ctx->block = block;
ctx->key = key;
}
/* !!! Following interfaces are to be called *once* per packet !!! */
/* Then you setup per-message nonce and pass the length of the message */
static int rk_crypto_ccm128_setiv(CCM128_CONTEXT *ctx,
const unsigned char *nonce, size_t nlen,
size_t mlen) {
unsigned int L = ctx->nonce.c[0] & 7; /* the L parameter */
if (nlen < (14 - L))
return -1; /* nonce is too short */
if (sizeof(mlen) == 8 && L >= 3) {
ctx->nonce.c[8] = (u8)(mlen >> (56 % (sizeof(mlen) * 8)));
ctx->nonce.c[9] = (u8)(mlen >> (48 % (sizeof(mlen) * 8)));
ctx->nonce.c[10] = (u8)(mlen >> (40 % (sizeof(mlen) * 8)));
ctx->nonce.c[11] = (u8)(mlen >> (32 % (sizeof(mlen) * 8)));
} else
ctx->nonce.u[1] = 0;
ctx->nonce.c[12] = (u8)(mlen >> 24);
ctx->nonce.c[13] = (u8)(mlen >> 16);
ctx->nonce.c[14] = (u8)(mlen >> 8);
ctx->nonce.c[15] = (u8)mlen;
ctx->nonce.c[0] &= ~0x40; /* clear Adata flag */
memcpy(&ctx->nonce.c[1], nonce, 14 - L);
return 0;
}
/* Then you pass additional authentication data, this is optional */
static void rk_crypto_ccm128_aad(CCM128_CONTEXT *ctx, const unsigned char *aad,
size_t alen) {
unsigned int i;
block128_f block = ctx->block;
if (alen == 0)
return;
ctx->nonce.c[0] |= 0x40; /* set Adata flag */
(*block)(ctx->nonce.c, ctx->cmac.c, ctx->key), ctx->blocks++;
if (alen < (0x10000 - 0x100)) {
ctx->cmac.c[0] ^= (u8)(alen >> 8);
ctx->cmac.c[1] ^= (u8)alen;
i = 2;
} else if (sizeof(alen) == 8 && alen >= (size_t)1
<< (32 % (sizeof(alen) * 8))) {
ctx->cmac.c[0] ^= 0xFF;
ctx->cmac.c[1] ^= 0xFF;
ctx->cmac.c[2] ^= (u8)(alen >> (56 % (sizeof(alen) * 8)));
ctx->cmac.c[3] ^= (u8)(alen >> (48 % (sizeof(alen) * 8)));
ctx->cmac.c[4] ^= (u8)(alen >> (40 % (sizeof(alen) * 8)));
ctx->cmac.c[5] ^= (u8)(alen >> (32 % (sizeof(alen) * 8)));
ctx->cmac.c[6] ^= (u8)(alen >> 24);
ctx->cmac.c[7] ^= (u8)(alen >> 16);
ctx->cmac.c[8] ^= (u8)(alen >> 8);
ctx->cmac.c[9] ^= (u8)alen;
i = 10;
} else {
ctx->cmac.c[0] ^= 0xFF;
ctx->cmac.c[1] ^= 0xFE;
ctx->cmac.c[2] ^= (u8)(alen >> 24);
ctx->cmac.c[3] ^= (u8)(alen >> 16);
ctx->cmac.c[4] ^= (u8)(alen >> 8);
ctx->cmac.c[5] ^= (u8)alen;
i = 6;
}
do {
for (; i < 16 && alen; ++i, ++aad, --alen)
ctx->cmac.c[i] ^= *aad;
(*block)(ctx->cmac.c, ctx->cmac.c, ctx->key), ctx->blocks++;
i = 0;
} while (alen);
}
/* Finally you encrypt or decrypt the message */
/* counter part of nonce may not be larger than L*8 bits,
* L is not larger than 8, therefore 64-bit counter... */
static void rk_ctr64_inc(unsigned char *counter) {
unsigned int n = 8;
u8 c;
counter += 8;
do {
--n;
c = counter[n];
++c;
counter[n] = c;
if (c)
return;
} while (n);
}
static int rk_crypto_ccm128_encrypt(CCM128_CONTEXT *ctx,
const unsigned char *inp,
unsigned char *out, size_t len) {
size_t n;
unsigned int i, L;
unsigned char flags0 = ctx->nonce.c[0];
block128_f block = ctx->block;
void *key = ctx->key;
union {
u64 u[2];
u8 c[16];
} scratch;
if (!(flags0 & 0x40))
(*block)(ctx->nonce.c, ctx->cmac.c, key), ctx->blocks++;
ctx->nonce.c[0] = L = flags0 & 7;
for (n = 0, i = 15 - L; i < 15; ++i) {
n |= ctx->nonce.c[i];
ctx->nonce.c[i] = 0;
n <<= 8;
}
n |= ctx->nonce.c[15]; /* reconstructed length */
ctx->nonce.c[15] = 1;
// printf("n = %d,len = %d\n",n,len);
if (n != len)
return -1; /* length mismatch */
ctx->blocks += ((len + 15) >> 3) | 1;
if (ctx->blocks > (U64(1) << 61))
return -2; /* too much data */
while (len >= 16) {
#if defined(STRICT_ALIGNMENT)
union {
u64 u[2];
u8 c[16];
} temp;
memcpy(temp.c, inp, 16);
ctx->cmac.u[0] ^= temp.u[0];
ctx->cmac.u[1] ^= temp.u[1];
#else
ctx->cmac.u[0] ^= ((u64 *)inp)[0];
ctx->cmac.u[1] ^= ((u64 *)inp)[1];
#endif
(*block)(ctx->cmac.c, ctx->cmac.c, key);
(*block)(ctx->nonce.c, scratch.c, key);
rk_ctr64_inc(ctx->nonce.c);
#if defined(STRICT_ALIGNMENT)
temp.u[0] ^= scratch.u[0];
temp.u[1] ^= scratch.u[1];
memcpy(out, temp.c, 16);
#else
((u64 *)out)[0] = scratch.u[0] ^ ((u64 *)inp)[0];
((u64 *)out)[1] = scratch.u[1] ^ ((u64 *)inp)[1];
#endif
inp += 16;
out += 16;
len -= 16;
}
if (len) {
for (i = 0; i < len; ++i)
ctx->cmac.c[i] ^= inp[i];
(*block)(ctx->cmac.c, ctx->cmac.c, key);
(*block)(ctx->nonce.c, scratch.c, key);
for (i = 0; i < len; ++i)
out[i] = scratch.c[i] ^ inp[i];
}
for (i = 15 - L; i < 16; ++i)
ctx->nonce.c[i] = 0;
(*block)(ctx->nonce.c, scratch.c, key);
ctx->cmac.u[0] ^= scratch.u[0];
ctx->cmac.u[1] ^= scratch.u[1];
ctx->nonce.c[0] = flags0;
return 0;
}
static int rk_crypto_ccm128_decrypt(CCM128_CONTEXT *ctx,
const unsigned char *inp,
unsigned char *out, size_t len) {
size_t n;
unsigned int i, L;
unsigned char flags0 = ctx->nonce.c[0];
block128_f block = ctx->block;
void *key = ctx->key;
union {
u64 u[2];
u8 c[16];
} scratch;
if (!(flags0 & 0x40))
(*block)(ctx->nonce.c, ctx->cmac.c, key);
ctx->nonce.c[0] = L = flags0 & 7;
for (n = 0, i = 15 - L; i < 15; ++i) {
n |= ctx->nonce.c[i];
ctx->nonce.c[i] = 0;
n <<= 8;
}
n |= ctx->nonce.c[15]; /* reconstructed length */
ctx->nonce.c[15] = 1;
// printf("n = %d,len = %d\n",n,len);
if (n != len)
return -1;
while (len >= 16) {
#if defined(STRICT_ALIGNMENT)
union {
u64 u[2];
u8 c[16];
} temp;
#endif
(*block)(ctx->nonce.c, scratch.c, key);
rk_ctr64_inc(ctx->nonce.c);
#if defined(STRICT_ALIGNMENT)
memcpy(temp.c, inp, 16);
ctx->cmac.u[0] ^= (scratch.u[0] ^= temp.u[0]);
ctx->cmac.u[1] ^= (scratch.u[1] ^= temp.u[1]);
memcpy(out, scratch.c, 16);
#else
ctx->cmac.u[0] ^= (((u64 *)out)[0] = scratch.u[0] ^ ((u64 *)inp)[0]);
ctx->cmac.u[1] ^= (((u64 *)out)[1] = scratch.u[1] ^ ((u64 *)inp)[1]);
#endif
(*block)(ctx->cmac.c, ctx->cmac.c, key);
inp += 16;
out += 16;
len -= 16;
}
if (len) {
(*block)(ctx->nonce.c, scratch.c, key);
for (i = 0; i < len; ++i)
ctx->cmac.c[i] ^= (out[i] = scratch.c[i] ^ inp[i]);
(*block)(ctx->cmac.c, ctx->cmac.c, key);
}
for (i = 15 - L; i < 16; ++i)
ctx->nonce.c[i] = 0;
(*block)(ctx->nonce.c, scratch.c, key);
ctx->cmac.u[0] ^= scratch.u[0];
ctx->cmac.u[1] ^= scratch.u[1];
ctx->nonce.c[0] = flags0;
return 0;
}
#if 0
static void rk_ctr64_add (unsigned char *counter,size_t inc)
{ size_t n=8, val=0;
counter += 8;
do {
--n;
val += counter[n] + (inc&0xff);
counter[n] = (unsigned char)val;
val >>= 8; /* carry bit */
inc >>= 8;
} while(n && (inc || val));
}
static int rk_crypto_ccm128_encrypt_ccm64(CCM128_CONTEXT *ctx,
const unsigned char *inp, unsigned char *out,
size_t len,ccm128_f stream)
{
size_t n;
unsigned int i,L;
unsigned char flags0 = ctx->nonce.c[0];
block128_f block = ctx->block;
void * key = ctx->key;
union { u64 u[2]; u8 c[16]; } scratch;
if (!(flags0&0x40))
(*block)(ctx->nonce.c,ctx->cmac.c,key),
ctx->blocks++;
ctx->nonce.c[0] = L = flags0&7;
for (n=0,i=15-L;i<15;++i) {
n |= ctx->nonce.c[i];
ctx->nonce.c[i]=0;
n <<= 8;
}
n |= ctx->nonce.c[15]; /* reconstructed length */
ctx->nonce.c[15]=1;
if (n!=len) return -1; /* length mismatch */
ctx->blocks += ((len+15)>>3)|1;
if (ctx->blocks > (U64(1)<<61)) return -2; /* too much data */
n=len/16;
if (n) {
(*stream)(inp,out,n,key,ctx->nonce.c,ctx->cmac.c);
n *= 16;
inp += n;
out += n;
len -= n;
if (len) rk_ctr64_add(ctx->nonce.c,n/16);
}
if (len) {
for (i=0; i<len; ++i) ctx->cmac.c[i] ^= inp[i];
(*block)(ctx->cmac.c,ctx->cmac.c,key);
(*block)(ctx->nonce.c,scratch.c,key);
for (i=0; i<len; ++i) out[i] = scratch.c[i]^inp[i];
}
for (i=15-L;i<16;++i)
ctx->nonce.c[i]=0;
(*block)(ctx->nonce.c,scratch.c,key);
ctx->cmac.u[0] ^= scratch.u[0];
ctx->cmac.u[1] ^= scratch.u[1];
ctx->nonce.c[0] = flags0;
return 0;
}
static int rk_crypto_ccm128_decrypt_ccm64(CCM128_CONTEXT *ctx,
const unsigned char *inp, unsigned char *out,
size_t len,ccm128_f stream)
{
size_t n;
unsigned int i,L;
unsigned char flags0 = ctx->nonce.c[0];
block128_f block = ctx->block;
void * key = ctx->key;
union { u64 u[2]; u8 c[16]; } scratch;
if (!(flags0&0x40))
(*block)(ctx->nonce.c,ctx->cmac.c,key);
ctx->nonce.c[0] = L = flags0&7;
for (n=0,i=15-L;i<15;++i) {
n |= ctx->nonce.c[i];
ctx->nonce.c[i]=0;
n <<= 8;
}
n |= ctx->nonce.c[15]; /* reconstructed length */
ctx->nonce.c[15]=1;
if (n!=len) return -1;
n=len/16;
if (n) {
(*stream)(inp,out,n,key,ctx->nonce.c,ctx->cmac.c);
n *= 16;
inp += n;
out += n;
len -= n;
if (len) rk_ctr64_add(ctx->nonce.c,n/16);
}
if (len) {
(*block)(ctx->nonce.c,scratch.c,key);
for (i=0; i<len; ++i)
ctx->cmac.c[i] ^= (out[i] = scratch.c[i]^inp[i]);
(*block)(ctx->cmac.c,ctx->cmac.c,key);
}
for (i=15-L;i<16;++i)
ctx->nonce.c[i]=0;
(*block)(ctx->nonce.c,scratch.c,key);
ctx->cmac.u[0] ^= scratch.u[0];
ctx->cmac.u[1] ^= scratch.u[1];
ctx->nonce.c[0] = flags0;
return 0;
}
#endif
size_t rk_crypto_ccm128_tag(CCM128_CONTEXT *ctx, unsigned char *tag,
size_t len) {
unsigned int M = (ctx->nonce.c[0] >> 3) & 7; /* the M parameter */
M *= 2;
M += 2;
if (len < M)
return 0;
memcpy(tag, ctx->cmac.c, M);
return M;
}
#endif
/*m is the lengh of tag*/
#if 0
int rk_aes_ccm_encrypt(struct aes_ae_in *in, struct aes_ae_out *out, const int enc)
{
int time = 0;
int i = 0;
RK_AES_KEY ks1, ks2;
CCM128_CONTEXT ctx;
int ret = 0;
//unsigned int m = 12;
unsigned int l = 0;
if (in->key == NULL || in->iv == NULL || in->src == NULL || in->aad == NULL)
return -1;
if (in->key_len!= 128/8 && in->key_len != 192/8 && in->key_len != 256/8)
return -2;
if(in->src_len % 16 != 0)
return -3;
if(out->dest == NULL || out->tag == NULL)
return -4;
printf("-----param sucess-----\n");
l = out->dest_len;/* dest_len = inlength */
ret = rk_aes_set_encrypt_key(in->key, in->key_len * 8, &ks1);
if(ret != 0)
printf("-----set_encrypt_key fail-----\n");
rk_crypto_ccm128_init(&ctx, in->tag_size, l, &ks1, (block128_f)rk_aes_encrypt);
ret = rk_crypto_ccm128_setiv(&ctx, in->iv, in->iv_len, l);/*l ?*/
if (ret != 0)
printf("========rk_crypto_ccm128_setiv ret = %d================\n",ret);
rk_crypto_ccm128_aad(&ctx, in->aad, in->aad_len);
if(enc){
if((ret = rk_crypto_ccm128_encrypt(&ctx, in->src , out->dest,in->src_len)) != 0)
printf("=========rk_crypto_ccm128_encrypt ret = %d===\n",ret);
rk_crypto_ccm128_tag(&ctx, out->tag, 12); /*tag is length*/
}
else{if((ret = rk_crypto_ccm128_decrypt(&ctx, out->dest, in->src, out->dest_len)) != 0)
printf("=========rk_crypto_ccm128_decrypt ret = %d===\n",ret);
}
printf("----op done------------");
return 0;
}
#endif
static int compare_string(unsigned char *a, unsigned char *b,
unsigned int len) {
unsigned int i;
if ((a == NULL) || (b == NULL))
return -1;
for (i = 0; i < len; i++) {
if (*a != *b)
return -1;
a++;
b++;
}
return 0;
}
int rk_aes_ccm_encrypt(struct aes_ae_in *in, struct aes_ae_out *out,
const int enc) {
RK_AES_KEY ks1;
CCM128_CONTEXT ctx;
int ret = 0;
unsigned int m = 0;
unsigned int l = 0;
unsigned char tag_tmp[16] = {0};
if (in->key == NULL || in->iv == NULL || in->src == NULL || in->aad == NULL)
return -1;
if (in->key_len != 128 / 8 && in->key_len != 192 / 8 &&
in->key_len != 256 / 8)
return -2;
if (in->src_len % 16 != 0)
return -3;
if (out->dest == NULL || out->tag == NULL)
return -4;
m = in->tag_size;
// tag_tmp = malloc(m);
l = 15 - in->iv_len; /* l + iv_len = 15 */
ret = rk_aes_set_encrypt_key(in->key, in->key_len * 8, &ks1);
if (ret != 0) {
printf("-----set_encrypt_key fail-----\n");
goto exit;
}
/* M :tag size ,L = 8? src_Len*/
rk_crypto_ccm128_init(&ctx, in->tag_size, l, &ks1,
(block128_f)rk_aes_encrypt);
// ret = rk_crypto_ccm128_setiv(&ctx, in->iv, in->iv_len, l);/*l ?*/
ret = rk_crypto_ccm128_setiv(&ctx, in->iv, in->iv_len, in->src_len);
if (ret != 0) {
printf("========rk_crypto_ccm128_setiv ret = %d================\n", ret);
goto exit;
}
rk_crypto_ccm128_aad(&ctx, in->aad, in->aad_len);
if (enc) {
if ((ret = rk_crypto_ccm128_encrypt(&ctx, in->src, out->dest,
in->src_len)) != 0) {
printf("=========rk_crypto_ccm128_encrypt ret = %d===\n", ret);
goto exit;
}
rk_crypto_ccm128_tag(&ctx, out->tag, m); /*tag is length*/
} else {
if ((ret = rk_crypto_ccm128_decrypt(&ctx, in->src, out->dest,
in->src_len)) != 0) {
printf("=========rk_crypto_ccm128_decrypt ret = %d===\n", ret);
goto exit;
}
rk_crypto_ccm128_tag(&ctx, tag_tmp, m);
return compare_string(tag_tmp, out->tag, m);
}
exit:
return ret;
}