luckfox-pico-sdk/sysdrv/source/mcu/rt-thread/components/drivers/spi/spi_dev.c
luckfox-eng29 8f34c2760d project:build.sh: Added fastboot support; custom modifications to U-Boot and kernel implemented using patches.
project:cfg:BoardConfig_IPC: Added fastboot BoardConfig file and firmware post-scripts, distinguishing between
the BoardConfigs for Luckfox Pico Pro and Luckfox Pico Max. project:app: Added fastboot_client and rk_smart_door
for quick boot applications; updated rkipc app to adapt to the latest media library. media:samples: Added more
usage examples. media:rockit: Fixed bugs; removed support for retrieving data frames from VPSS. media:isp:
Updated rkaiq library and related tools to support connection to RKISP_Tuner. sysdrv:Makefile: Added support for
compiling drv_ko on Luckfox Pico Ultra W using Ubuntu; added support for custom root filesystem.
sysdrv:tools:board: Updated Buildroot optional mirror sources, updated some software versions, and stored device
tree files and configuration files that undergo multiple modifications for U-Boot and kernel separately.
sysdrv:source:mcu: Used RISC-V MCU SDK with RT-Thread system, mainly for initializing camera AE during quick
boot. sysdrv:source:uboot: Added support for fastboot; added high baud rate DDR bin for serial firmware upgrades.
sysdrv:source:kernel: Upgraded to version 5.10.160; increased NPU frequency for RV1106G3; added support for
fastboot.

Signed-off-by: luckfox-eng29 <eng29@luckfox.com>
2024-10-14 09:47:04 +08:00

174 lines
4.4 KiB
C

/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
*/
#include <rtthread.h>
#include <drivers/spi.h>
/* SPI bus device interface, compatible with RT-Thread 0.3.x/1.0.x */
static rt_size_t _spi_bus_device_read(rt_device_t dev,
rt_off_t pos,
void *buffer,
rt_size_t size)
{
struct rt_spi_bus *bus;
bus = (struct rt_spi_bus *)dev;
RT_ASSERT(bus != RT_NULL);
RT_ASSERT(bus->owner != RT_NULL);
return rt_spi_transfer(bus->owner, RT_NULL, buffer, size);
}
static rt_size_t _spi_bus_device_write(rt_device_t dev,
rt_off_t pos,
const void *buffer,
rt_size_t size)
{
struct rt_spi_bus *bus;
bus = (struct rt_spi_bus *)dev;
RT_ASSERT(bus != RT_NULL);
RT_ASSERT(bus->owner != RT_NULL);
return rt_spi_transfer(bus->owner, buffer, RT_NULL, size);
}
static rt_err_t _spi_bus_device_control(rt_device_t dev,
int cmd,
void *args)
{
/* TODO: add control command handle */
switch (cmd)
{
case 0: /* set device */
break;
case 1:
break;
}
return RT_EOK;
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops spi_bus_ops =
{
RT_NULL,
RT_NULL,
RT_NULL,
_spi_bus_device_read,
_spi_bus_device_write,
_spi_bus_device_control
};
#endif
rt_err_t rt_spi_bus_device_init(struct rt_spi_bus *bus, const char *name)
{
struct rt_device *device;
RT_ASSERT(bus != RT_NULL);
device = &bus->parent;
/* set device type */
device->type = RT_Device_Class_SPIBUS;
/* initialize device interface */
#ifdef RT_USING_DEVICE_OPS
device->ops = &spi_bus_ops;
#else
device->init = RT_NULL;
device->open = RT_NULL;
device->close = RT_NULL;
device->read = _spi_bus_device_read;
device->write = _spi_bus_device_write;
device->control = _spi_bus_device_control;
#endif
/* register to device manager */
return rt_device_register(device, name, RT_DEVICE_FLAG_RDWR);
}
/* SPI Dev device interface, compatible with RT-Thread 0.3.x/1.0.x */
static rt_size_t _spidev_device_read(rt_device_t dev,
rt_off_t pos,
void *buffer,
rt_size_t size)
{
struct rt_spi_device *device;
device = (struct rt_spi_device *)dev;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
return rt_spi_transfer(device, RT_NULL, buffer, size);
}
static rt_size_t _spidev_device_write(rt_device_t dev,
rt_off_t pos,
const void *buffer,
rt_size_t size)
{
struct rt_spi_device *device;
device = (struct rt_spi_device *)dev;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
return rt_spi_transfer(device, buffer, RT_NULL, size);
}
static rt_err_t _spidev_device_control(rt_device_t dev,
int cmd,
void *args)
{
switch (cmd)
{
case 0: /* set device */
break;
case 1:
break;
}
return RT_EOK;
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops spi_device_ops =
{
RT_NULL,
RT_NULL,
RT_NULL,
_spidev_device_read,
_spidev_device_write,
_spidev_device_control
};
#endif
rt_err_t rt_spidev_device_init(struct rt_spi_device *dev, const char *name)
{
struct rt_device *device;
RT_ASSERT(dev != RT_NULL);
device = &(dev->parent);
/* set device type */
device->type = RT_Device_Class_SPIDevice;
#ifdef RT_USING_DEVICE_OPS
device->ops = &spi_device_ops;
#else
device->init = RT_NULL;
device->open = RT_NULL;
device->close = RT_NULL;
device->read = _spidev_device_read;
device->write = _spidev_device_write;
device->control = _spidev_device_control;
#endif
/* register to device manager */
return rt_device_register(device, name, RT_DEVICE_FLAG_RDWR);
}