luckfox-pico-sdk/sysdrv/drv_ko/wifi/atbm6441/hal_apollo/hwio_sdio.c
2023-08-08 20:36:47 +08:00

1351 lines
34 KiB
C

/*
* Low-level device IO routines for altobeam apollo wifi drivers
*
* Copyright (c) 2016, altobeam
*
* Based on:
* Copyright (c) 2010, stericsson
* Author: Dmitry Tarnyagin <dmitry.tarnyagin@stericsson.com>
*
* Based on:
* ST-Ericsson UMAC CW1200 driver, which is
* Copyright (c) 2010, ST-Ericsson
* Author: Ajitpal Singh <ajitpal.singh@stericsson.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifdef LINUX_OS
#include <linux/types.h>
#include <linux/module.h>
#include <linux/kernel.h>
#endif
#include "apollo.h"
#include "hwio.h"
#include "sbus.h"
#include "debug.h"
#include "dcxo_dpll.h"
#include "wsm.h"
/*config dcxo value*/
char *dcxo_value="default";
module_param(dcxo_value,charp,0644);
MODULE_PARM_DESC(dcxo_value,"Need to config dcxo reg");
/*config dpll value*/
char *dpll_value="default";
module_param(dpll_value,charp,0644);
MODULE_PARM_DESC(dpll_value,"Need to config dpll reg");
extern int atbm_sdio_memcpy_fromio_for_sleep(struct sbus_priv *self,
unsigned int addr,
void *dst, int count);
extern int atbm_sdio_memcpy_toio_for_sleep(struct sbus_priv *self,
unsigned int addr,
const void *src, int count);
/* Sdio addr is 4*spi_addr */
#define SPI_REG_ADDR_TO_SDIO(spi_reg_addr) ((spi_reg_addr) << 2)
#define SDIO_INPUT_64 1
#define SDIO_ADDR17BIT(buf_id, mpf, force, reg_id_ofs) \
((((buf_id) & 0x7F) << 6) \
| (((force) & 1) << 5) \
| (((reg_id_ofs) & 0x1F) << 0))
static int __atbm_reg_read(struct atbm_common *hw_priv, u16 addr,
void *buf, u32 buf_len)
{
u16 addr_sdio;
u32 sdio_reg_addr_17bit ;
/* Check if buffer is aligned to 4 byte boundary */
if (WARN_ON(((unsigned long)buf & 3) && (buf_len > 4))) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: buffer is not aligned.\n", __func__);
return -EINVAL;
}
/* Convert to SDIO Register Address */
addr_sdio = SPI_REG_ADDR_TO_SDIO(addr);
sdio_reg_addr_17bit = SDIO_ADDR17BIT(0, 0, 0, addr_sdio);
BUG_ON(!hw_priv->sbus_ops);
return hw_priv->sbus_ops->sbus_read_sync(hw_priv->sbus_priv,
sdio_reg_addr_17bit,
buf, buf_len);
}
static int __atbm_reg_write(struct atbm_common *hw_priv, u16 addr,
const void *buf, u32 buf_len)
{
u16 addr_sdio;
u32 sdio_reg_addr_17bit ;
/* Convert to SDIO Register Address */
addr_sdio = SPI_REG_ADDR_TO_SDIO(addr);
sdio_reg_addr_17bit = SDIO_ADDR17BIT(0, 0, 0, addr_sdio);
//printk("__atbm_reg_write sdio_reg_addr_17bit 0x%x,addr_sdio 0x%x,len %d,buf_id %d\n",sdio_reg_addr_17bit,addr_sdio,buf_len,buf_id);
BUG_ON(!hw_priv->sbus_ops);
return hw_priv->sbus_ops->sbus_write_sync(hw_priv->sbus_priv,
sdio_reg_addr_17bit,
buf, buf_len);
}
int __atbm_reg_read_for_sleep(struct atbm_common *hw_priv, u16 addr,
void *buf, u32 buf_len)
{
u16 addr_sdio;
u32 sdio_reg_addr_17bit ;
/* Check if buffer is aligned to 4 byte boundary */
if (WARN_ON(((unsigned long)buf & 3) && (buf_len > 4))) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: buffer is not aligned.\n", __func__);
return -EINVAL;
}
/* Convert to SDIO Register Address */
addr_sdio = SPI_REG_ADDR_TO_SDIO(addr);
sdio_reg_addr_17bit = SDIO_ADDR17BIT(0, 0, 0, addr_sdio);
return atbm_sdio_memcpy_fromio_for_sleep(hw_priv->sbus_priv, sdio_reg_addr_17bit, buf, buf_len);
}
int __atbm_reg_write_for_sleep(struct atbm_common *hw_priv, u16 addr,
const void *buf, u32 buf_len)
{
u16 addr_sdio;
u32 sdio_reg_addr_17bit ;
/* Convert to SDIO Register Address */
addr_sdio = SPI_REG_ADDR_TO_SDIO(addr);
sdio_reg_addr_17bit = SDIO_ADDR17BIT(0, 0, 0, addr_sdio);
//printk("__atbm_reg_write sdio_reg_addr_17bit 0x%x,addr_sdio 0x%x,len %d,buf_id %d\n",sdio_reg_addr_17bit,addr_sdio,buf_len,buf_id);
return atbm_sdio_memcpy_toio_for_sleep(hw_priv->sbus_priv, sdio_reg_addr_17bit, buf, buf_len);
}
static int __atbm_data_read(struct atbm_common *hw_priv, u16 addr,
void *buf, u32 buf_len, int buf_id)
{
u16 addr_sdio;
u32 sdio_reg_addr_17bit ;
/* Check if buffer is aligned to 4 byte boundary */
if (WARN_ON(((unsigned long)buf & 3) && (buf_len > 4))) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: buffer is not aligned.\n", __func__);
return -EINVAL;
}
/* Convert to SDIO Register Address */
addr_sdio = SPI_REG_ADDR_TO_SDIO(addr);
sdio_reg_addr_17bit = SDIO_ADDR17BIT(buf_id, 0, hw_priv->buf_force_tx, addr_sdio);
hw_priv->buf_force_tx=0;
BUG_ON(!hw_priv->sbus_ops);
return hw_priv->sbus_ops->sbus_memcpy_fromio(hw_priv->sbus_priv,
sdio_reg_addr_17bit,
buf, buf_len);
}
static int __atbm_data_write(struct atbm_common *hw_priv, u16 addr,
const void *buf, u32 buf_len, int buf_id)
{
u16 addr_sdio;
u32 sdio_reg_addr_17bit ;
/* Convert to SDIO Register Address */
addr_sdio = SPI_REG_ADDR_TO_SDIO(addr);
sdio_reg_addr_17bit = SDIO_ADDR17BIT(buf_id, 0, hw_priv->buf_force_rx, addr_sdio);
hw_priv->buf_force_rx=0;
BUG_ON(!hw_priv->sbus_ops);
return hw_priv->sbus_ops->sbus_memcpy_toio(hw_priv->sbus_priv,
sdio_reg_addr_17bit,
buf, buf_len);
}
static inline int __atbm_reg_read_32(struct atbm_common *hw_priv,
u16 addr, u32 *val)
{
return __atbm_reg_read(hw_priv, addr, val, 4);
}
static inline int __atbm_reg_write_32(struct atbm_common *hw_priv,
u16 addr, u32 val)
{
return __atbm_reg_write(hw_priv, addr, &val, sizeof(val));
}
int __atbm_reg_write_dpll(struct atbm_common *hw_priv, u16 addr,
const void *buf, u32 buf_len,int buf_id)
{
u16 addr_sdio;
u32 sdio_reg_addr_17bit ;
/* Check if buffer is aligned to 4 byte boundary */
if (WARN_ON(((unsigned long)buf & 3) && (buf_len > 4))) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: buffer is not aligned.\n", __func__);
return -EINVAL;
}
/* Convert to SDIO Register Address */
addr_sdio = addr;//SPI_REG_ADDR_TO_SDIO(addr);
sdio_reg_addr_17bit = SDIO_ADDR17BIT(buf_id, 0, 0, addr_sdio);
BUG_ON(!hw_priv->sbus_ops);
return hw_priv->sbus_ops->sbus_write_sync(hw_priv->sbus_priv,
sdio_reg_addr_17bit,
buf, buf_len);
}
int __atbm_reg_read_dpll(struct atbm_common *hw_priv, u16 addr,
const void *buf, u32 buf_len,int buf_id)
{
u16 addr_sdio;
u32 sdio_reg_addr_17bit ;
//atbm_dbg(ATBM_APOLLO_DBG_MSG, "%x,addr,func=s\n",addr,__func__);
/* Convert to SDIO Register Address */
addr_sdio = addr;//SPI_REG_ADDR_TO_SDIO(addr);
sdio_reg_addr_17bit = SDIO_ADDR17BIT(buf_id, 0, 0, addr_sdio);
//atbm_dbg(ATBM_APOLLO_DBG_MSG, "%x,sdio_reg_addr_17bit,func=%s\n",sdio_reg_addr_17bit,__func__);
BUG_ON(!hw_priv->sbus_ops);
return hw_priv->sbus_ops->sbus_read_sync(hw_priv->sbus_priv,
sdio_reg_addr_17bit,
(void*)buf, buf_len);
}
int atbm_reg_read_dpll(struct atbm_common *hw_priv, u16 addr, void *buf,
u32 buf_len)
{
int ret;
BUG_ON(!hw_priv->sbus_ops);
hw_priv->sbus_ops->lock(hw_priv->sbus_priv);
ret = __atbm_reg_read_dpll(hw_priv, addr, buf, buf_len, 0);
hw_priv->sbus_ops->unlock(hw_priv->sbus_priv);
return ret;
}
int atbm_reg_write_dpll(struct atbm_common *hw_priv, u16 addr, const void *buf,
u32 buf_len)
{
int ret;
BUG_ON(!hw_priv->sbus_ops);
hw_priv->sbus_ops->lock(hw_priv->sbus_priv);
ret = __atbm_reg_write_dpll(hw_priv, addr, buf, buf_len, 0);
hw_priv->sbus_ops->unlock(hw_priv->sbus_priv);
return ret;
}
int atbm_reg_read(struct atbm_common *hw_priv, u16 addr, void *buf,
u32 buf_len)
{
int ret;
BUG_ON(!hw_priv->sbus_ops);
hw_priv->sbus_ops->lock(hw_priv->sbus_priv);
ret = __atbm_reg_read(hw_priv, addr, buf, buf_len);
hw_priv->sbus_ops->unlock(hw_priv->sbus_priv);
return ret;
}
int atbm_reg_write(struct atbm_common *hw_priv, u16 addr, const void *buf,
u32 buf_len)
{
int ret;
BUG_ON(!hw_priv->sbus_ops);
hw_priv->sbus_ops->lock(hw_priv->sbus_priv);
ret = __atbm_reg_write(hw_priv, addr, buf, buf_len);
hw_priv->sbus_ops->unlock(hw_priv->sbus_priv);
return ret;
}
int atbm_reg_read_for_sleep(struct atbm_common *hw_priv, u16 addr, void *buf,
u32 buf_len)
{
return __atbm_reg_read_for_sleep(hw_priv, addr, buf, buf_len);
}
int atbm_reg_write_for_sleep(struct atbm_common *hw_priv, u16 addr, const void *buf,
u32 buf_len)
{
return __atbm_reg_write_for_sleep(hw_priv, addr, buf, buf_len);
}
int atbm_reg_read_unlock(struct atbm_common *hw_priv, u16 addr, void *buf,
u32 buf_len)
{
int ret;
int retry=0;
BUG_ON(!hw_priv->sbus_ops);
while (retry <= 3) {
ret = __atbm_reg_read(hw_priv, addr, buf, buf_len);
if(ret){
atbm_printk_err("%s\n",__func__);
retry++;
}else{
break;
}
}
return ret;
}
int atbm_reg_write_unlock(struct atbm_common *hw_priv, u16 addr, const void *buf,
u32 buf_len)
{
int ret;
int retry=0;
BUG_ON(!hw_priv->sbus_ops);
while (retry <= 3) {
ret = __atbm_reg_write(hw_priv, addr, buf, buf_len);
if(ret){
atbm_printk_err("%s\n",__func__);
retry++;
}else{
break;
}
}
return ret;
}
int atbm_data_read_unlock(struct atbm_common *hw_priv, void *buf, u32 buf_len)
{
int ret = -1, retry = 1;
int buf_id_rx = hw_priv->buf_id_rx;
while (retry <= MAX_RETRY) {
ret = __atbm_data_read(hw_priv,
ATBM_HIFREG_IN_OUT_QUEUE_REG_ID, buf,
buf_len, buf_id_rx + 1);
if (!ret) {
buf_id_rx = (buf_id_rx + 1) & 3;
hw_priv->buf_id_rx = buf_id_rx;
break;
} else {
retry++;
mdelay(1000);
atbm_dbg(ATBM_APOLLO_DBG_ERROR, "%s,error :[%d]\n",
__func__, ret);
}
}
return ret;
}
int atbm_data_read(struct atbm_common *hw_priv, void *buf, u32 buf_len)
{
int ret;
BUG_ON(!hw_priv->sbus_ops);
hw_priv->sbus_ops->lock(hw_priv->sbus_priv);
{
ret = atbm_data_read_unlock(hw_priv,buf,buf_len);
}
hw_priv->sbus_ops->unlock(hw_priv->sbus_priv);
return ret;
}
#if (PROJ_TYPE>=ARES_B)
//just ARESB have this function
//used this function to clear sdio rtl bug register
// if not do this sdio direct mode (wr/read reigster) will not work
int atbm_data_force_write(struct atbm_common *hw_priv, const void *buf,
size_t buf_len)
{
int ret, retry = 1;
int buf_id_tx;
BUG_ON(!hw_priv->sbus_ops);
hw_priv->sbus_ops->lock(hw_priv->sbus_priv);
buf_id_tx = ((hw_priv->buf_id_tx-1)&0x3f)+64;
atbm_printk_always("buf_id_tx =%d %s\n",buf_id_tx,__func__);
while (retry <= MAX_RETRY) {
ret = __atbm_data_write(hw_priv,
ATBM_HIFREG_IN_OUT_QUEUE_REG_ID, buf,
buf_len, buf_id_tx);
if (!ret) {
buf_id_tx = ((buf_id_tx + hw_priv->buf_id_offset)&0x3f);
hw_priv->buf_id_tx = buf_id_tx;
break;
} else {
retry++;
mdelay(1000);
atbm_dbg(ATBM_APOLLO_DBG_ERROR, "%s,%d,error :[%d]\n",
__func__, __LINE__, ret);
}
}
hw_priv->sbus_ops->unlock(hw_priv->sbus_priv);
return ret;
}
#endif //#if (PROJ_TYPE>=ARES_B)
//sdio
int atbm_data_write_unlock(struct atbm_common *hw_priv, const void *buf,
size_t buf_len)
{
int ret = -1, retry = 1;
int buf_id_tx;
buf_id_tx = hw_priv->buf_id_tx;
while (retry <= MAX_RETRY) {
ret = __atbm_data_write(hw_priv,
ATBM_HIFREG_IN_OUT_QUEUE_REG_ID, buf,
buf_len, buf_id_tx);
if (!ret) {
// buf_id_tx = ((buf_id_tx + hw_priv->buf_id_offset) >63)?((buf_id_tx + hw_priv->buf_id_offset)-64): (buf_id_tx + hw_priv->buf_id_offset) ;
buf_id_tx = ((buf_id_tx + hw_priv->buf_id_offset)&0x3f);
hw_priv->buf_id_tx = buf_id_tx;
break;
} else {
retry++;
mdelay(1000);
atbm_dbg(ATBM_APOLLO_DBG_ERROR, "%s,%d,error :[%d]\n",
__func__, __LINE__, ret);
}
}
return ret;
}
int atbm_data_write(struct atbm_common *hw_priv, const void *buf,
size_t buf_len)
{
int ret;
BUG_ON(!hw_priv->sbus_ops);
hw_priv->sbus_ops->lock(hw_priv->sbus_priv);
// printk("buf_id =%d,buf_id_offset=%d\n",buf_id_tx,hw_priv->buf_id_offset);
ret = atbm_data_write_unlock(hw_priv,buf,buf_len);
hw_priv->sbus_ops->unlock(hw_priv->sbus_priv);
return ret;
}
//usb
int atbm_indirect_read(struct atbm_common *hw_priv, u32 addr, void *buf,
u32 buf_len, u32 prefetch, u16 port_addr)
{
u32 val32 = 0;
int i, ret;
if ((buf_len / 2) >= 0x1000) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't read more than 0xfff words.\n",
__func__);
WARN_ON(1);
return -EINVAL;
goto out;
}
hw_priv->sbus_ops->lock(hw_priv->sbus_priv);
/* Write address */
ret = __atbm_reg_write_32(hw_priv, ATBM_HIFREG_SRAM_BASE_ADDR_REG_ID,
addr);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't write address register.\n",
__func__);
goto out;
}
/* Read CONFIG Register Value - We will read 32 bits */
ret = __atbm_reg_read_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID, &val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't read config register.\n",
__func__);
goto out;
}
/* Set PREFETCH bit */
ret = __atbm_reg_write_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID,
val32 | prefetch);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't write prefetch bit.\n",
__func__);
goto out;
}
/* Check for PRE-FETCH bit to be cleared */
for (i = 0; i < 20; i++) {
ret = __atbm_reg_read_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID,
&val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't check prefetch bit.\n",
__func__);
goto out;
}
if (!(val32 & prefetch))
break;
mdelay(i);
}
if (val32 & prefetch) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Prefetch bit is not cleared.\n",
__func__);
goto out;
}
/* Read data port */
ret = __atbm_reg_read(hw_priv, port_addr, buf, buf_len);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't read data port.\n",
__func__);
goto out;
}
out:
hw_priv->sbus_ops->unlock(hw_priv->sbus_priv);
return ret;
}
int atbm_apb_write(struct atbm_common *hw_priv, u32 addr, const void *buf,
u32 buf_len)
{
int ret;
if ((buf_len / 2) >= 0x1000) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't wrire more than 0xfff words.\n",
__func__);
WARN_ON(1);
return -EINVAL;
}
hw_priv->sbus_ops->lock(hw_priv->sbus_priv);
/* Write address */
ret = __atbm_reg_write_32(hw_priv, ATBM_HIFREG_SRAM_BASE_ADDR_REG_ID,
addr);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't write address register.\n",
__func__);
goto out;
}
/* Write data port */
ret = __atbm_reg_write(hw_priv, ATBM_HIFREG_SRAM_DPORT_REG_ID,
buf, buf_len);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR, "%s: Can't write data port.\n",
__func__);
goto out;
}
out:
hw_priv->sbus_ops->unlock(hw_priv->sbus_priv);
return ret;
}
int atbm_indirect_read_unlock(struct atbm_common *hw_priv, u32 addr, void *buf,
u32 buf_len, u32 prefetch, u16 port_addr)
{
u32 val32 = 0;
int i, ret;
int retry=0;
if ((buf_len / 2) >= 0x1000) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't read more than 0xfff words.\n",
__func__);
WARN_ON(1);
return -EINVAL;
goto out;
}
/* Write address */
while(retry<=3){
ret = __atbm_reg_write_32(hw_priv, ATBM_HIFREG_SRAM_BASE_ADDR_REG_ID,
addr);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't write address register.\n",
__func__);
retry++;
}else{
break;
}
}
/* Read CONFIG Register Value - We will read 32 bits */
retry=0;
while(retry<=3){
ret = __atbm_reg_read_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID, &val32);
if (ret <0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't read config register.\n",
__func__);
retry++;
}else{
break;
}
}
/* Set PREFETCH bit */
retry=0;
while(retry<=3){
ret = __atbm_reg_write_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID,
val32 | prefetch);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't write prefetch bit.\n",
__func__);
retry++;
}else{
break;
}
}
/* Check for PRE-FETCH bit to be cleared */
for (i = 0; i < 20; i++) {
ret = __atbm_reg_read_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID,
&val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't check prefetch bit.\n",
__func__);
mdelay(i);
continue;
}
if (!(val32 & prefetch))
break;
mdelay(i);
}
if (val32 & prefetch) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Prefetch bit is not cleared.\n",
__func__);
goto out;
}
/* Read data port */
retry=0;
while(retry<=3){
ret = __atbm_reg_read(hw_priv, port_addr, buf, buf_len);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't read data port.\n",
__func__);
retry++;
}else{
break;
}
}
out:
return ret;
}
int atbm_apb_write_reset(struct atbm_common *hw_priv, u32 addr, const void *buf,
u32 buf_len)
{
int ret;
if ((buf_len / 2) >= 0x1000) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't wrire more than 0xfff words.\n",
__func__);
WARN_ON(1);
return -EINVAL;
}
/* Write address */
ret = __atbm_reg_write_32(hw_priv, ATBM_HIFREG_SRAM_BASE_ADDR_REG_ID,
addr);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't write address register.\n",
__func__);
goto out;
}
/* Write data port */
ret = __atbm_reg_write(hw_priv, ATBM_HIFREG_SRAM_DPORT_REG_ID,
buf, buf_len);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR, "%s: Can't write data port.\n",
__func__);
goto out;
}
out:
return ret;
}
int atbm_fw_write(struct atbm_common *priv, u32 addr, const void *buf,
u32 buf_len)
{
return atbm_ahb_write(priv, addr, buf, buf_len);
}
int atbm_ahb_write(struct atbm_common *priv, u32 addr, const void *buf,
u32 buf_len)
{
int ret;
//printk(KERN_ERR "%s: addr %x\n",__func__,addr);
if (buf_len >= 512) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't wrire more than 0xfff words.\n",
__func__);
WARN_ON(1);
atbm_printk_err("%s:EXIT (1) \n",__func__);
return -EINVAL;
}
priv->sbus_ops->lock(priv->sbus_priv);
/* Write address */
ret = __atbm_reg_write_32(priv, ATBM_HIFREG_SRAM_BASE_ADDR_REG_ID, addr);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't write address register.\n",
__func__);
goto out;
}
/* Write data port */
ret = __atbm_reg_write(priv, ATBM_HIFREG_AHB_DPORT_REG_ID,
buf, buf_len);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR, "%s: Can't write data port.\n",
__func__);
goto out;
}
out:
priv->sbus_ops->unlock(priv->sbus_priv);
return ret;
}
int atbm_ahb_write_unlock(struct atbm_common *priv, u32 addr, const void *buf,
u32 buf_len)
{
int ret;
int retry=0;
//printk(KERN_ERR "%s: addr %x\n",__func__,addr);
if (buf_len >= 512) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't wrire more than 0xfff words.\n",
__func__);
WARN_ON(1);
atbm_printk_err("%s:EXIT (1) \n",__func__);
return -EINVAL;
}
/* Write address */
while(retry<=3){
ret = __atbm_reg_write_32(priv, ATBM_HIFREG_SRAM_BASE_ADDR_REG_ID, addr);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: Can't write address register.\n",
__func__);
retry++;
}else{
break;
}
}
retry=0;
/* Write data port */
while(retry<=3){
ret = __atbm_reg_write(priv, ATBM_HIFREG_AHB_DPORT_REG_ID,
buf, buf_len);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR, "%s: Can't write data port.\n",
__func__);
retry++;
}else{
break;
}
}
//out:
return ret;
}
int atbm_direct_read_reg_32(struct atbm_common *hw_priv, u32 addr, u32 *val)
{
int ret;
u32 val32;
u32 orig_config_data = 0;
/* Checking for access mode */
ret = atbm_reg_read_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID, &val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: can't read " \
"config register.\n", __func__);
goto out1;
}
orig_config_data = val32;
val32 |= ATBM_HIFREG_CONFIG_ACCESS_MODE_BIT;
ret = atbm_reg_write_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID,val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: can't write " \
"config register.\n", __func__);
goto out;
}
ret = atbm_ahb_read_32(hw_priv,addr,val);
//printk("val=%x\n",val);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: can't write " \
"config register.\n", __func__);
goto out;
}
out:
ret = atbm_reg_write_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID,orig_config_data);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: enable_irq: can't write " \
"config register.\n", __func__);
goto out;
}
out1:
return ret;
}
int atbm_direct_write_reg_32(struct atbm_common *hw_priv, u32 addr, u32 val)
{
int ret;
u32 val32;
u32 orig_config_data = 0;
/* Checking for access mode */
ret = atbm_reg_read_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID, &val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: can't read " \
"config register.\n", __func__);
goto out1;
}
orig_config_data = val32;
val32 |= ATBM_HIFREG_CONFIG_ACCESS_MODE_BIT;
ret = atbm_reg_write_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID,val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: can't write " \
"config register.\n", __func__);
goto out;
}
ret = atbm_ahb_write_32(hw_priv,addr,val);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: can't write " \
"config register.\n", __func__);
goto out;
}
out:
ret = atbm_reg_write_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID,orig_config_data);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: enable_irq: can't write " \
"config register.\n", __func__);
goto out;
}
out1:
return ret;
}
int atbm_direct_write_unlock(struct atbm_common *hw_priv, u32 addr, u32 val)
{
int ret;
u32 val32;
u32 orig_config_data = 0;
/* Checking for access mode */
ret = atbm_reg_read_unlock_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID, &val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: can't read " \
"config register.\n", __func__);
goto out1;
}
orig_config_data = val32;
val32 |= ATBM_HIFREG_CONFIG_ACCESS_MODE_BIT;
ret = atbm_reg_write_unlock_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID,val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: can't write " \
"config register.\n", __func__);
goto out;
}
ret = atbm_ahb_write_unlock_32(hw_priv,addr,val);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: can't write " \
"config register.\n", __func__);
goto out;
}
out:
ret = atbm_reg_write_unlock_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID,orig_config_data);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: enable_irq: can't write " \
"config register.\n", __func__);
goto out;
}
out1:
return ret;
}
int atbm_direct_read_unlock(struct atbm_common *hw_priv, u32 addr, u32 *val)
{
int ret;
u32 val32;
u32 orig_config_data = 0;
/* Checking for access mode */
ret = atbm_reg_read_unlock_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID, &val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: can't read " \
"config register.\n", __func__);
goto out1;
}
orig_config_data = val32;
val32 |= ATBM_HIFREG_CONFIG_ACCESS_MODE_BIT;
ret = atbm_reg_write_unlock_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID,val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: can't write " \
"config register.\n", __func__);
goto out;
}
ret = atbm_ahb_read_unlock_32(hw_priv,addr,val);
//printk("val=%x\n",val);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: can't write " \
"config register.\n", __func__);
goto out;
}
out:
ret = atbm_reg_write_unlock_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID,orig_config_data);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: enable_irq: can't write " \
"config register.\n", __func__);
goto out;
}
out1:
return ret;
}
void __atbm_irq_dbgPrint(struct atbm_common *priv)
{
u32 val32;
int ret;
ret = __atbm_reg_read_32(priv, ATBM_HIFREG_CONFIG_REG_ID, &val32);
if (ret < 0) {
pr_err("Can't read config register.\n");
return;
}
atbm_printk_debug("ATBM_HIFREG_CONFIG_REG_ID=0x%x\n", val32);
return;
}
int __atbm_irq_enable(struct atbm_common *priv, int enable)
{
u32 val32;
int ret;
ret = __atbm_reg_read_32(priv, ATBM_HIFREG_CONFIG_REG_ID, &val32);
if (ret < 0) {
pr_err("Can't read config register.\n");
return ret;
}
if (enable){
if(val32 & ATBM_HIFREG_CONF_IRQ_RDY_ENABLE)
return ret;
val32 |= ATBM_HIFREG_CONF_IRQ_RDY_ENABLE;
}
else {
if((val32 & ATBM_HIFREG_CONF_IRQ_RDY_ENABLE)==0)
return ret;
val32 &= ~ATBM_HIFREG_CONF_IRQ_RDY_ENABLE;
}
ret = __atbm_reg_write_32(priv, ATBM_HIFREG_CONFIG_REG_ID, val32);
if (ret < 0) {
pr_err("Can't write config register.\n");
return ret;
}
return 0;
}
//atbm_dcxo_dpll_initial
int atbm_before_load_firmware(struct atbm_common *hw_priv)
{
#if (PROJ_TYPE>=ARES_A)
#define ATBM_VOL_L (-1)
#else
#define ATBM_VOL_L (10)
#endif
int ret=0;
int i;
u32 val32;
u16 val16;
int major_revision;
u32 config_reg;
FUNC_ENTER();
BUG_ON(!hw_priv);
#if (ATBM_VOL_L == 10)
#pragma message ("1.0v")
atbm_printk_init("+++++++++++++++++1.0v+++++++++++++++++++\n");
ret = atbm_direct_write_reg_32(hw_priv,0xacc0178,0x3400071);
if(ret<0)
atbm_printk_err("write 0xacc0178 err\n");
#endif
retry:
/* Read CONFIG Register Value - We will read 32 bits */
ret = atbm_reg_read_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID, &val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: can't read config register.\n", __func__);
goto out;
}
hw_priv->hw_type = atbm_get_hw_type(val32, &major_revision);
if (hw_priv->hw_type < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: can't deduct hardware type.\n", __func__);
ret = -ENOTSUPP;
goto out;
}
/* Set wakeup bit in device */
ret = atbm_reg_read_16(hw_priv, ATBM_HIFREG_CONTROL_REG_ID, &val16);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: set_wakeup: can't read " \
"control register.\n", __func__);
goto out;
}
ret = atbm_reg_write_16(hw_priv, ATBM_HIFREG_CONTROL_REG_ID,
val16 | ATBM_HIFREG_CONT_WUP_BIT);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: set_wakeup: can't write " \
"control register.\n", __func__);
goto out;
}
#ifdef TEST_DCXO_CONFIG
/*start config dcxo */
ret=atbm_config_dcxo(hw_priv,dcxo_value,PROJ_TYPE,DCXO_TYPE,DPLL_CLOCK);
if (ret<0){
atbm_dbg(ATBM_APOLLO_DBG_MSG, "atbm_config_dcxo error.\n");
}
#endif
#ifdef TEST_DPLL_CONFIG
/*start config dpll */
ret = atbm_config_dpll(hw_priv,dpll_value,PROJ_TYPE,DPLL_CLOCK);
if (ret<0){
atbm_dbg(ATBM_APOLLO_DBG_MSG, "atbm_config_dpll error.\n");
}
#endif
#ifdef DCXO_USE_SMU_REG
/*The fifth step store dpll value to smu*/
if ((PROJ_TYPE==ATHENA_B)|| (PROJ_TYPE>=ARES_A)){
atbm_set_config_to_smu_apolloC(hw_priv,DPLL_CLOCK);
}else{
atbm_set_config_to_smu_apolloB(hw_priv,DPLL_CLOCK);
}
/*start shut down system*/
ret =atbm_system_done(hw_priv);
if (ret<0){
atbm_dbg(ATBM_APOLLO_DBG_MSG, "atbm_system_done error.\n");
}
#else
atbm_printk_err("%s:do not set config to smu\n",__func__);
#endif
atbm_dbg(ATBM_APOLLO_DBG_MSG, "atbm_wait_wlan_rdy Wait for wakeup .\n");
/* Set wakeup bit in device */
ret = atbm_reg_read_16(hw_priv, ATBM_HIFREG_CONTROL_REG_ID, &val16);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: set_wakeup: can't read " \
"control register.\n", __func__);
goto out;
}
ret = atbm_reg_write_16(hw_priv, ATBM_HIFREG_CONTROL_REG_ID, val16 | ATBM_HIFREG_CONT_WUP_BIT);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: set_wakeup: can't write " \
"control register.\n", __func__);
goto out;
}
/* Wait for wakeup */
for (i = 0 ; i < 3000 ; i += 1 + i / 2) {
ret = atbm_reg_read_16(hw_priv,
ATBM_HIFREG_CONTROL_REG_ID, &val16);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: wait_for_wakeup: can't read " \
"control register.\n", __func__);
goto out;
}
if (val16 & ATBM_HIFREG_CONT_RDY_BIT) {
atbm_dbg(ATBM_APOLLO_DBG_MSG,
"WLAN device is ready.\n");
break;
}
msleep(i);
}
if ((val16 & ATBM_HIFREG_CONT_RDY_BIT) == 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: wait_for_wakeup: device is not responding.\n",
__func__);
ret = -ETIMEDOUT;
goto out;
}
atbm_reg_read_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID, &config_reg);
if(config_reg & ATBM_HIFREG_PS_SYNC_SDIO_FLAG)
{
config_reg |= ATBM_HIFREG_PS_SYNC_SDIO_CLEAN;
atbm_reg_write_32(hw_priv,ATBM_HIFREG_CONFIG_REG_ID,config_reg);
}
hw_priv->hw_revision = ATBM_APOLLO_REV_1601;
/* set cpu reset ,cpu will stop */
/* Checking for access mode */
ret = atbm_reg_read_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID, &val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: enable_irq: can't read " \
"config register.\n", __func__);
goto out;
}
val32 |= ATBM_HIFREG_CONFIG_CPU_RESET_BIT|ATBM_HIFREG_CONFIG_ACCESS_MODE_BIT;
ret = atbm_reg_write_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID,val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: enable_irq: can't write " \
"config register.\n", __func__);
goto out;
}
ret = atbm_reg_read_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID, &val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: enable_irq: can't read " \
"config register.\n", __func__);
goto out;
}
WARN_ON(!(val32 & ATBM_HIFREG_CONFIG_ACCESS_MODE_BIT));
//u32 testreg_uart;
#ifdef START_DCXO_CONFIG
atbm_ahb_write_32(priv,0x18e00014,0x200);
atbm_ahb_read_32(priv,0x18e00014,&val32_1);
//atbm_ahb_read_32(priv,0x16400000,&testreg_uart);
atbm_printk_bus("0x18e000e4-->%08x %08x\n",val32_1);
#endif//TEST_DCXO_CONFIG
out:
if(ret != 0 ){
u8 Dpll_val_suc_fail;
ret=atbm_reg_write_8(hw_priv,0x18,0x51);
if (ret<0){
atbm_dbg(ATBM_APOLLO_DBG_DCXO_DPLL,"%d:read action dpll_work_s & dpll_work_fail error",__LINE__);
goto out;
}
ret =atbm_reg_read_8(hw_priv,0x19,&Dpll_val_suc_fail);
atbm_printk_err("%s:Dpll_val_suc_fail(%x)\n",__func__,Dpll_val_suc_fail);
atbm_reset_lmc_cpu(hw_priv);
goto retry;
}
#if (DPLL_CLOCK == DPLL_CLOCK_24M)
{
u32 reset_reg = 0;
#pragma message("add delay before load fw")
mdelay(100);
ret = atbm_direct_read_reg_32(hw_priv,0x16100074,&reset_reg);
atbm_printk_err("%s:read [0x16100074]=[%x],ret(%d)\n",__func__,reset_reg,ret);
reset_reg |= BIT(0);
ret = atbm_direct_write_reg_32(hw_priv,0x16100074,reset_reg);
atbm_printk_err("%s:write [0x16100074]=[%x],ret(%d)\n",__func__,reset_reg,ret);
mdelay(100);
}
#endif
return ret;
}
//atbm_initial_irq
int atbm_after_load_firmware(struct atbm_common *hw_priv)
{
int ret;
//int i;
u32 val32;
u16 val16;
//enable gpio irq register,may need move to lmac/apb.c SMU_Init
ret=atbm_ahb_read_32(hw_priv,0x161000ac,&val32);
val32&=0xFFFFF7F8;
val32|=BIT(12);
ret=atbm_ahb_write_32(hw_priv,0x161000ac,val32);
if(ret<0){
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: enable_irq: can't read " \
"config register.\n", __func__);
}
#if (PROJ_TYPE==ARES_B)
ret=atbm_ahb_read_32(hw_priv,0x1610102c,&val32);
if(ret<0){
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: 0x1610102c: can't read register.\n", __func__);
goto out;
}
val32 &= ~(0xffff0000);
val32 |= BIT(0) | BIT(1) | (0x1 << 16);
ret=atbm_ahb_write_32(hw_priv,0x1610102c,val32);
if(ret<0){
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: 0x1610102c: can't write register.\n", __func__);
goto out;
}
//max 3s
unsigned long timeout = jiffies + msecs_to_jiffies(3 * 1000);
while (!time_after(jiffies, timeout))
{
ret=atbm_ahb_read_32(hw_priv,0x1610102c,&val32);
if(ret<0){
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: 0x1610102c: can't read register.\n", __func__);
goto out;
}
if (val32 & BIT(16))
break;
schedule_timeout_interruptible(msecs_to_jiffies(1));
}
#endif
/* If device is CW1200 the IRQ enable/disable bits
* are in CONFIG register, clear cpu reset ,cpu will run */
ret = atbm_reg_read_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID, &val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: enable_irq: can't read " \
"config register.\n", __func__);
goto unsubscribe;
}
val32 |= ATBM_HIFREG_CONF_IRQ_RDY_ENABLE;
val32 &= ~ATBM_HIFREG_CONFIG_CPU_RESET_BIT;
//enable data1 IRQ
val32 &= ~ATBM_HIFREG_CONFIG_CLEAR_INT_BIT;
ret = atbm_reg_write_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID,val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: enable_irq: can't write " \
"config register.\n", __func__);
goto unsubscribe;
}
#if (PROJ_TYPE==ARES_B)
ret=atbm_ahb_write_32(hw_priv,0x16100074,0x1);
if(ret<0){
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: 0x1610102c: can't write register.\n", __func__);
goto out;
}
#endif
//hare sdio + iot,let lmac know host initial done .add by wp
//ret = atbm_ahb_read_32(hw_priv, SDIO_INIT_DONE_REG, &val32);
//atbm_printk_init("SDIO_INIT_DONE_REG %x %x.\n",SDIO_INIT_DONE_REG,val32);
//atbm_ahb_write_32(hw_priv,SDIO_INIT_DONE_REG,val32&(~BIT(11)));
/* Configure device for MESSSAGE MODE */
ret = atbm_reg_read_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID, &val32);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: set_mode: can't read config register.\n",
__func__);
goto unsubscribe;
}
ret = atbm_reg_write_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID,
val32 & ~ATBM_HIFREG_CONFIG_ACCESS_MODE_BIT);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: set_mode: can't write config register.\n",
__func__);
goto unsubscribe;
}
/* Unless we read the CONFIG Register we are
* not able to get an interrupt */
mdelay(1);
atbm_reg_read_32(hw_priv, ATBM_HIFREG_CONFIG_REG_ID, &val32);
//hare sdio + iot,let lmac know host initial done .add by wp
/* Set wakeup bit in device */
ret = atbm_reg_read_16(hw_priv, ATBM_HIFREG_CONTROL_REG_ID, &val16);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: set_wakeup: can't read " \
"control register.\n", __func__);
goto out;
}
ret = atbm_reg_write_16(hw_priv, ATBM_HIFREG_CONTROL_REG_ID, val16 | ATBM_HIFREG_CONT_WUP_BIT);
if (ret < 0) {
atbm_dbg(ATBM_APOLLO_DBG_ERROR,
"%s: set_wakeup: can't write " \
"control register.\n", __func__);
goto out;
}
out:
return ret;
unsubscribe:
hw_priv->sbus_ops->irq_unsubscribe(hw_priv->sbus_priv);
return ret;
}